Closed-loop separation control using machine learning
- Autores
- Gautier, N.; Aider, J. L.; Duriez, Thomas Pierre Cornil; Noack, B. R.; Segond, M.; Abel, M.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the first closed-loop separation control experiment using a novel, model-free strategy based on genetic programming, which we call 'machine learning control'. The goal is to reduce the recirculation zone of backward-facing step flow at Reh = 1350 manipulated by a slotted jet and optically sensed by online particle image velocimetry. The feedback control law is optimized with respect to a cost functional based on the recirculation area and a penalization of the actuation. This optimization is performed employing genetic programming. After 12 generations comprised of 500 individuals, the algorithm converges to a feedback law which reduces the recirculation zone by 80 %. This machine learning control is benchmarked against the best periodic forcing which excites Kelvin-Helmholtz vortices. The machine learning control yields a new actuation mechanism resonating with the low-frequency flapping mode instability. This feedback control performs similarly to periodic forcing at the design condition but outperforms periodic forcing when the Reynolds number is varied by a factor two. The current study indicates that machine learning control can effectively explore and optimize new feedback actuation mechanisms in numerous experimental applications.
Fil: Gautier, N.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; Francia
Fil: Aider, J. L.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; Francia
Fil: Duriez, Thomas Pierre Cornil. Université de Poitiers; Francia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Noack, B. R.. Université de Poitiers; Francia
Fil: Segond, M.. Ambrosys; Alemania
Fil: Abel, M.. Ambrosys; Alemania - Materia
-
Control Theory
Flow Control
Separated Flows - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38415
Ver los metadatos del registro completo
id |
CONICETDig_fca544efd0feda159226347e1feedaea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38415 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Closed-loop separation control using machine learningGautier, N.Aider, J. L.Duriez, Thomas Pierre CornilNoack, B. R.Segond, M.Abel, M.Control TheoryFlow ControlSeparated Flowshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present the first closed-loop separation control experiment using a novel, model-free strategy based on genetic programming, which we call 'machine learning control'. The goal is to reduce the recirculation zone of backward-facing step flow at Reh = 1350 manipulated by a slotted jet and optically sensed by online particle image velocimetry. The feedback control law is optimized with respect to a cost functional based on the recirculation area and a penalization of the actuation. This optimization is performed employing genetic programming. After 12 generations comprised of 500 individuals, the algorithm converges to a feedback law which reduces the recirculation zone by 80 %. This machine learning control is benchmarked against the best periodic forcing which excites Kelvin-Helmholtz vortices. The machine learning control yields a new actuation mechanism resonating with the low-frequency flapping mode instability. This feedback control performs similarly to periodic forcing at the design condition but outperforms periodic forcing when the Reynolds number is varied by a factor two. The current study indicates that machine learning control can effectively explore and optimize new feedback actuation mechanisms in numerous experimental applications.Fil: Gautier, N.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; FranciaFil: Aider, J. L.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; FranciaFil: Duriez, Thomas Pierre Cornil. Université de Poitiers; Francia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noack, B. R.. Université de Poitiers; FranciaFil: Segond, M.. Ambrosys; AlemaniaFil: Abel, M.. Ambrosys; AlemaniaCambridge University Press2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38415Gautier, N.; Aider, J. L.; Duriez, Thomas Pierre Cornil; Noack, B. R.; Segond, M.; et al.; Closed-loop separation control using machine learning; Cambridge University Press; Journal of Fluid Mechanics; 770; 5-2015; 442-4570022-1120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2015.95info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/closedloop-separation-control-using-machine-learning/D28454120D1B533531BE9DADC9DF2548info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:12:51Zoai:ri.conicet.gov.ar:11336/38415instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:12:51.319CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Closed-loop separation control using machine learning |
title |
Closed-loop separation control using machine learning |
spellingShingle |
Closed-loop separation control using machine learning Gautier, N. Control Theory Flow Control Separated Flows |
title_short |
Closed-loop separation control using machine learning |
title_full |
Closed-loop separation control using machine learning |
title_fullStr |
Closed-loop separation control using machine learning |
title_full_unstemmed |
Closed-loop separation control using machine learning |
title_sort |
Closed-loop separation control using machine learning |
dc.creator.none.fl_str_mv |
Gautier, N. Aider, J. L. Duriez, Thomas Pierre Cornil Noack, B. R. Segond, M. Abel, M. |
author |
Gautier, N. |
author_facet |
Gautier, N. Aider, J. L. Duriez, Thomas Pierre Cornil Noack, B. R. Segond, M. Abel, M. |
author_role |
author |
author2 |
Aider, J. L. Duriez, Thomas Pierre Cornil Noack, B. R. Segond, M. Abel, M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Control Theory Flow Control Separated Flows |
topic |
Control Theory Flow Control Separated Flows |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the first closed-loop separation control experiment using a novel, model-free strategy based on genetic programming, which we call 'machine learning control'. The goal is to reduce the recirculation zone of backward-facing step flow at Reh = 1350 manipulated by a slotted jet and optically sensed by online particle image velocimetry. The feedback control law is optimized with respect to a cost functional based on the recirculation area and a penalization of the actuation. This optimization is performed employing genetic programming. After 12 generations comprised of 500 individuals, the algorithm converges to a feedback law which reduces the recirculation zone by 80 %. This machine learning control is benchmarked against the best periodic forcing which excites Kelvin-Helmholtz vortices. The machine learning control yields a new actuation mechanism resonating with the low-frequency flapping mode instability. This feedback control performs similarly to periodic forcing at the design condition but outperforms periodic forcing when the Reynolds number is varied by a factor two. The current study indicates that machine learning control can effectively explore and optimize new feedback actuation mechanisms in numerous experimental applications. Fil: Gautier, N.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; Francia Fil: Aider, J. L.. École Supérieure de Physique et Chimie Industrielles de la ville de Paris; Francia Fil: Duriez, Thomas Pierre Cornil. Université de Poitiers; Francia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Noack, B. R.. Université de Poitiers; Francia Fil: Segond, M.. Ambrosys; Alemania Fil: Abel, M.. Ambrosys; Alemania |
description |
We present the first closed-loop separation control experiment using a novel, model-free strategy based on genetic programming, which we call 'machine learning control'. The goal is to reduce the recirculation zone of backward-facing step flow at Reh = 1350 manipulated by a slotted jet and optically sensed by online particle image velocimetry. The feedback control law is optimized with respect to a cost functional based on the recirculation area and a penalization of the actuation. This optimization is performed employing genetic programming. After 12 generations comprised of 500 individuals, the algorithm converges to a feedback law which reduces the recirculation zone by 80 %. This machine learning control is benchmarked against the best periodic forcing which excites Kelvin-Helmholtz vortices. The machine learning control yields a new actuation mechanism resonating with the low-frequency flapping mode instability. This feedback control performs similarly to periodic forcing at the design condition but outperforms periodic forcing when the Reynolds number is varied by a factor two. The current study indicates that machine learning control can effectively explore and optimize new feedback actuation mechanisms in numerous experimental applications. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38415 Gautier, N.; Aider, J. L.; Duriez, Thomas Pierre Cornil; Noack, B. R.; Segond, M.; et al.; Closed-loop separation control using machine learning; Cambridge University Press; Journal of Fluid Mechanics; 770; 5-2015; 442-457 0022-1120 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38415 |
identifier_str_mv |
Gautier, N.; Aider, J. L.; Duriez, Thomas Pierre Cornil; Noack, B. R.; Segond, M.; et al.; Closed-loop separation control using machine learning; Cambridge University Press; Journal of Fluid Mechanics; 770; 5-2015; 442-457 0022-1120 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2015.95 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/closedloop-separation-control-using-machine-learning/D28454120D1B533531BE9DADC9DF2548 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083277063979008 |
score |
12.891075 |