Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control
- Autores
- Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; Spohn, Andreas; Duriez, Thomas Pierre Cornil; Cordier, Laurent; Noack, Bernd R.; Abel, Markus; Segond, Marc; Shaqarin, Tamir; Brunton, Steven L.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control.
Fil: Parezanović, Vladimir. Institut Pprime; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Laurentie, Jean Charles. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Fourment, Carine. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Delville, Joël. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Bonnet, Jean-Paul. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Spohn, Andreas. Institut Pprime; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Duriez, Thomas Pierre Cornil. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cordier, Laurent. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Noack, Bernd R.. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia
Fil: Abel, Markus. Ambrosys; Alemania. University of Potsdam; Alemania. Université de Lorraine; Francia
Fil: Segond, Marc. Ambrosys; Alemania. Taflia Technical University; Jordania
Fil: Shaqarin, Tamir. Taflia Technical University; Jordania
Fil: Brunton, Steven L.. University of Washington; Estados Unidos - Materia
-
Active Flow Control
Extremum Seeking
Genetic Programming
Machine Learning
Pod
Shear Flow
Turbulence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37726
Ver los metadatos del registro completo
id |
CONICETDig_0f0f18a8b63feaf532b28be984a2ca5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37726 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning controlParezanović, VladimirLaurentie, Jean CharlesFourment, CarineDelville, JoëlBonnet, Jean-PaulSpohn, AndreasDuriez, Thomas Pierre CornilCordier, LaurentNoack, Bernd R.Abel, MarkusSegond, MarcShaqarin, TamirBrunton, Steven L.Active Flow ControlExtremum SeekingGenetic ProgrammingMachine LearningPodShear FlowTurbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control.Fil: Parezanović, Vladimir. Institut Pprime; Francia. Centre National de la Recherche Scientifique; FranciaFil: Laurentie, Jean Charles. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Fourment, Carine. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Delville, Joël. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Bonnet, Jean-Paul. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Spohn, Andreas. Institut Pprime; Francia. Centre National de la Recherche Scientifique; FranciaFil: Duriez, Thomas Pierre Cornil. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cordier, Laurent. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Noack, Bernd R.. Centre National de la Recherche Scientifique; Francia. Institut Pprime; FranciaFil: Abel, Markus. Ambrosys; Alemania. University of Potsdam; Alemania. Université de Lorraine; FranciaFil: Segond, Marc. Ambrosys; Alemania. Taflia Technical University; JordaniaFil: Shaqarin, Tamir. Taflia Technical University; JordaniaFil: Brunton, Steven L.. University of Washington; Estados UnidosSpringer2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37726Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-1731386-61841573-1987CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10494-014-9581-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s10494-014-9581-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:51Zoai:ri.conicet.gov.ar:11336/37726instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:51.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
title |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
spellingShingle |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control Parezanović, Vladimir Active Flow Control Extremum Seeking Genetic Programming Machine Learning Pod Shear Flow Turbulence |
title_short |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
title_full |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
title_fullStr |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
title_full_unstemmed |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
title_sort |
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control |
dc.creator.none.fl_str_mv |
Parezanović, Vladimir Laurentie, Jean Charles Fourment, Carine Delville, Joël Bonnet, Jean-Paul Spohn, Andreas Duriez, Thomas Pierre Cornil Cordier, Laurent Noack, Bernd R. Abel, Markus Segond, Marc Shaqarin, Tamir Brunton, Steven L. |
author |
Parezanović, Vladimir |
author_facet |
Parezanović, Vladimir Laurentie, Jean Charles Fourment, Carine Delville, Joël Bonnet, Jean-Paul Spohn, Andreas Duriez, Thomas Pierre Cornil Cordier, Laurent Noack, Bernd R. Abel, Markus Segond, Marc Shaqarin, Tamir Brunton, Steven L. |
author_role |
author |
author2 |
Laurentie, Jean Charles Fourment, Carine Delville, Joël Bonnet, Jean-Paul Spohn, Andreas Duriez, Thomas Pierre Cornil Cordier, Laurent Noack, Bernd R. Abel, Markus Segond, Marc Shaqarin, Tamir Brunton, Steven L. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Active Flow Control Extremum Seeking Genetic Programming Machine Learning Pod Shear Flow Turbulence |
topic |
Active Flow Control Extremum Seeking Genetic Programming Machine Learning Pod Shear Flow Turbulence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control. Fil: Parezanović, Vladimir. Institut Pprime; Francia. Centre National de la Recherche Scientifique; Francia Fil: Laurentie, Jean Charles. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Fourment, Carine. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Delville, Joël. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Bonnet, Jean-Paul. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Spohn, Andreas. Institut Pprime; Francia. Centre National de la Recherche Scientifique; Francia Fil: Duriez, Thomas Pierre Cornil. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cordier, Laurent. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Noack, Bernd R.. Centre National de la Recherche Scientifique; Francia. Institut Pprime; Francia Fil: Abel, Markus. Ambrosys; Alemania. University of Potsdam; Alemania. Université de Lorraine; Francia Fil: Segond, Marc. Ambrosys; Alemania. Taflia Technical University; Jordania Fil: Shaqarin, Tamir. Taflia Technical University; Jordania Fil: Brunton, Steven L.. University of Washington; Estados Unidos |
description |
Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37726 Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-173 1386-6184 1573-1987 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37726 |
identifier_str_mv |
Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-173 1386-6184 1573-1987 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10494-014-9581-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10494-014-9581-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082718554652672 |
score |
12.891075 |