A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows
- Autores
- Dondo, Rodolfo Gabriel; Cerda, Jaime
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the major research topics in the supply chain management field is the multi-depot vehicle routing problem with time windows (m-VRPTW). It aims to designing a set of minimum-cost routes for a vehicle fleet servicing many customers with known demands and predefined time windows. This paper presents an m-VRPTW local search improvement algorithm that explores a large neighborhood of the current solution to discover a cheaper set of feasible routes. The neighborhood structure comprises all solutions that can be generated by iteratively performing node exchanges among nearby trips followed by a node reordering on every route. Manageable mixed-integer linear programming (MILP) formulations for both algorithmic steps were developed. To further reduce the problem size, a spatial decomposition scheme has also been applied. A significant number of large-scale benchmark problems, some of them including up to 200 customers, multiple depots and different vehicle-types, were solved in quite reasonable CPU times.
Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Large-Scale Vehicle Routing Problems
Time Windows
Multi-Depot
Improvement Algorithm
Hybrid Approach - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25443
Ver los metadatos del registro completo
id |
CONICETDig_6880f61107b25fd7ea580a91d8f9707d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25443 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time WindowsDondo, Rodolfo GabrielCerda, JaimeLarge-Scale Vehicle Routing ProblemsTime WindowsMulti-DepotImprovement AlgorithmHybrid Approachhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2One of the major research topics in the supply chain management field is the multi-depot vehicle routing problem with time windows (m-VRPTW). It aims to designing a set of minimum-cost routes for a vehicle fleet servicing many customers with known demands and predefined time windows. This paper presents an m-VRPTW local search improvement algorithm that explores a large neighborhood of the current solution to discover a cheaper set of feasible routes. The neighborhood structure comprises all solutions that can be generated by iteratively performing node exchanges among nearby trips followed by a node reordering on every route. Manageable mixed-integer linear programming (MILP) formulations for both algorithmic steps were developed. To further reduce the problem size, a spatial decomposition scheme has also been applied. A significant number of large-scale benchmark problems, some of them including up to 200 customers, multiple depots and different vehicle-types, were solved in quite reasonable CPU times.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Ireland2009-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25443Dondo, Rodolfo Gabriel; Cerda, Jaime; A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows; Elsevier Ireland; Computers and Chemical Engineering; 33; 2; 2-2009; 513-5300098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.003info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135408002081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:35Zoai:ri.conicet.gov.ar:11336/25443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:35.707CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
title |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
spellingShingle |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows Dondo, Rodolfo Gabriel Large-Scale Vehicle Routing Problems Time Windows Multi-Depot Improvement Algorithm Hybrid Approach |
title_short |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
title_full |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
title_fullStr |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
title_full_unstemmed |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
title_sort |
A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows |
dc.creator.none.fl_str_mv |
Dondo, Rodolfo Gabriel Cerda, Jaime |
author |
Dondo, Rodolfo Gabriel |
author_facet |
Dondo, Rodolfo Gabriel Cerda, Jaime |
author_role |
author |
author2 |
Cerda, Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Large-Scale Vehicle Routing Problems Time Windows Multi-Depot Improvement Algorithm Hybrid Approach |
topic |
Large-Scale Vehicle Routing Problems Time Windows Multi-Depot Improvement Algorithm Hybrid Approach |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One of the major research topics in the supply chain management field is the multi-depot vehicle routing problem with time windows (m-VRPTW). It aims to designing a set of minimum-cost routes for a vehicle fleet servicing many customers with known demands and predefined time windows. This paper presents an m-VRPTW local search improvement algorithm that explores a large neighborhood of the current solution to discover a cheaper set of feasible routes. The neighborhood structure comprises all solutions that can be generated by iteratively performing node exchanges among nearby trips followed by a node reordering on every route. Manageable mixed-integer linear programming (MILP) formulations for both algorithmic steps were developed. To further reduce the problem size, a spatial decomposition scheme has also been applied. A significant number of large-scale benchmark problems, some of them including up to 200 customers, multiple depots and different vehicle-types, were solved in quite reasonable CPU times. Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
One of the major research topics in the supply chain management field is the multi-depot vehicle routing problem with time windows (m-VRPTW). It aims to designing a set of minimum-cost routes for a vehicle fleet servicing many customers with known demands and predefined time windows. This paper presents an m-VRPTW local search improvement algorithm that explores a large neighborhood of the current solution to discover a cheaper set of feasible routes. The neighborhood structure comprises all solutions that can be generated by iteratively performing node exchanges among nearby trips followed by a node reordering on every route. Manageable mixed-integer linear programming (MILP) formulations for both algorithmic steps were developed. To further reduce the problem size, a spatial decomposition scheme has also been applied. A significant number of large-scale benchmark problems, some of them including up to 200 customers, multiple depots and different vehicle-types, were solved in quite reasonable CPU times. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25443 Dondo, Rodolfo Gabriel; Cerda, Jaime; A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows; Elsevier Ireland; Computers and Chemical Engineering; 33; 2; 2-2009; 513-530 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25443 |
identifier_str_mv |
Dondo, Rodolfo Gabriel; Cerda, Jaime; A Hybrid Local Improvement Algorithm for Large-scale Multi-depot Vehicle Routing Problems with Time Windows; Elsevier Ireland; Computers and Chemical Engineering; 33; 2; 2-2009; 513-530 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.003 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135408002081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ireland |
publisher.none.fl_str_mv |
Elsevier Ireland |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613831763951616 |
score |
13.070432 |