Noise-Assisted EMD Methods in Action
- Autores
- Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Flandrin, Patrick
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we explore the capabilities of two noise-assisted EMD methods: Ensemble EMD (EEMD) and the recently proposed Complete Ensemble EMD with Adaptive Noise (CEEMDAN), to recover a pure tone embedded in dierent kinds of noise, both stationary and nonstationary. Experiments are carried out for assessing their performances with respect to the level of the added noise and the number of realizations used for averaging. The obtained results partly support empirical recommendations reported in the literature while evidencing new distinctive features. While EEMD presents quite dierent behaviors for dierent situations, CEEMDAN evidences some robustness with an almost unaected performance for the studied cases.
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Flandrin, Patrick. Centre National de la Recherche Scientifique; Francia - Materia
-
Empirical Mode Decomposition
Ensemble Empirical Mode Decomposition
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
Adaptive Signal Processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/197442
Ver los metadatos del registro completo
id |
CONICETDig_8aaf70a86b8edd0a00f4d776c5b975a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/197442 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Noise-Assisted EMD Methods in ActionColominas, Marcelo AlejandroSchlotthauer, GastonTorres, Maria EugeniaFlandrin, PatrickEmpirical Mode DecompositionEnsemble Empirical Mode DecompositionComplete Ensemble Empirical Mode Decomposition with Adaptive NoiseAdaptive Signal Processinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work we explore the capabilities of two noise-assisted EMD methods: Ensemble EMD (EEMD) and the recently proposed Complete Ensemble EMD with Adaptive Noise (CEEMDAN), to recover a pure tone embedded in dierent kinds of noise, both stationary and nonstationary. Experiments are carried out for assessing their performances with respect to the level of the added noise and the number of realizations used for averaging. The obtained results partly support empirical recommendations reported in the literature while evidencing new distinctive features. While EEMD presents quite dierent behaviors for dierent situations, CEEMDAN evidences some robustness with an almost unaected performance for the studied cases.Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Flandrin, Patrick. Centre National de la Recherche Scientifique; FranciaWorld Scientific2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197442Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Flandrin, Patrick; Noise-Assisted EMD Methods in Action; World Scientific; Advances in Adaptive Data Analysis; 4; 4; 10-2012; 1-111793-5369CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S1793536912500252info:eu-repo/semantics/altIdentifier/doi/10.1142/S1793536912500252info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:12Zoai:ri.conicet.gov.ar:11336/197442instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:12.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Noise-Assisted EMD Methods in Action |
title |
Noise-Assisted EMD Methods in Action |
spellingShingle |
Noise-Assisted EMD Methods in Action Colominas, Marcelo Alejandro Empirical Mode Decomposition Ensemble Empirical Mode Decomposition Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Adaptive Signal Processing |
title_short |
Noise-Assisted EMD Methods in Action |
title_full |
Noise-Assisted EMD Methods in Action |
title_fullStr |
Noise-Assisted EMD Methods in Action |
title_full_unstemmed |
Noise-Assisted EMD Methods in Action |
title_sort |
Noise-Assisted EMD Methods in Action |
dc.creator.none.fl_str_mv |
Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia Flandrin, Patrick |
author |
Colominas, Marcelo Alejandro |
author_facet |
Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia Flandrin, Patrick |
author_role |
author |
author2 |
Schlotthauer, Gaston Torres, Maria Eugenia Flandrin, Patrick |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Empirical Mode Decomposition Ensemble Empirical Mode Decomposition Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Adaptive Signal Processing |
topic |
Empirical Mode Decomposition Ensemble Empirical Mode Decomposition Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Adaptive Signal Processing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we explore the capabilities of two noise-assisted EMD methods: Ensemble EMD (EEMD) and the recently proposed Complete Ensemble EMD with Adaptive Noise (CEEMDAN), to recover a pure tone embedded in dierent kinds of noise, both stationary and nonstationary. Experiments are carried out for assessing their performances with respect to the level of the added noise and the number of realizations used for averaging. The obtained results partly support empirical recommendations reported in the literature while evidencing new distinctive features. While EEMD presents quite dierent behaviors for dierent situations, CEEMDAN evidences some robustness with an almost unaected performance for the studied cases. Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina Fil: Flandrin, Patrick. Centre National de la Recherche Scientifique; Francia |
description |
In this work we explore the capabilities of two noise-assisted EMD methods: Ensemble EMD (EEMD) and the recently proposed Complete Ensemble EMD with Adaptive Noise (CEEMDAN), to recover a pure tone embedded in dierent kinds of noise, both stationary and nonstationary. Experiments are carried out for assessing their performances with respect to the level of the added noise and the number of realizations used for averaging. The obtained results partly support empirical recommendations reported in the literature while evidencing new distinctive features. While EEMD presents quite dierent behaviors for dierent situations, CEEMDAN evidences some robustness with an almost unaected performance for the studied cases. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/197442 Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Flandrin, Patrick; Noise-Assisted EMD Methods in Action; World Scientific; Advances in Adaptive Data Analysis; 4; 4; 10-2012; 1-11 1793-5369 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/197442 |
identifier_str_mv |
Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Flandrin, Patrick; Noise-Assisted EMD Methods in Action; World Scientific; Advances in Adaptive Data Analysis; 4; 4; 10-2012; 1-11 1793-5369 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S1793536912500252 info:eu-repo/semantics/altIdentifier/doi/10.1142/S1793536912500252 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268910341062656 |
score |
13.13397 |