Mutual information and the F-theorem

Autores
Casini, Horacio German; Huerta, Marina; Myers, Robert C.; Yale, Alexandre
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mutual information is used as a purely geometrical regularization ofentanglement entropy applicable to any QFT. A coefficient in the mutualinformation between concentric circular entangling surfaces gives a preciseuniversal prescription for the monotonous quantity in the c-theorem for d=3.This is in principle computable using any regularization for the entropy, andin particular is a definition suitable for lattice models. We rederive theproof of the c-theorem for d=3 in terms of mutual information, and check ourarguments with holographic entanglement entropy, a free scalar field, and anextensive mutual information model.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá
Fil: Yale, Alexandre. Perimeter Institute for Theoretical Physics; Canadá. University of Waterloo; Canadá
Materia
Field Theories in Lower Dimensions
Renormalization Group
Topological Field Theories
Conformal and W Symmetry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45342

id CONICETDig_c78622cfdd2444fdc24cef94e59c9da0
oai_identifier_str oai:ri.conicet.gov.ar:11336/45342
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mutual information and the F-theoremCasini, Horacio GermanHuerta, MarinaMyers, Robert C.Yale, AlexandreField Theories in Lower DimensionsRenormalization GroupTopological Field TheoriesConformal and W Symmetryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Mutual information is used as a purely geometrical regularization ofentanglement entropy applicable to any QFT. A coefficient in the mutualinformation between concentric circular entangling surfaces gives a preciseuniversal prescription for the monotonous quantity in the c-theorem for d=3.This is in principle computable using any regularization for the entropy, andin particular is a definition suitable for lattice models. We rederive theproof of the c-theorem for d=3 in terms of mutual information, and check ourarguments with holographic entanglement entropy, a free scalar field, and anextensive mutual information model.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; CanadáFil: Yale, Alexandre. Perimeter Institute for Theoretical Physics; Canadá. University of Waterloo; CanadáSpringer Heidelberg2015-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45342Casini, Horacio German; Huerta, Marina; Myers, Robert C.; Yale, Alexandre; Mutual information and the F-theorem; Springer Heidelberg; Journal of High Energy Physics; 2015; 3; 1-10-2015; 1-711029-84791029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.06195v1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2015)003info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2015)003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:30Zoai:ri.conicet.gov.ar:11336/45342instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:30.473CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mutual information and the F-theorem
title Mutual information and the F-theorem
spellingShingle Mutual information and the F-theorem
Casini, Horacio German
Field Theories in Lower Dimensions
Renormalization Group
Topological Field Theories
Conformal and W Symmetry
title_short Mutual information and the F-theorem
title_full Mutual information and the F-theorem
title_fullStr Mutual information and the F-theorem
title_full_unstemmed Mutual information and the F-theorem
title_sort Mutual information and the F-theorem
dc.creator.none.fl_str_mv Casini, Horacio German
Huerta, Marina
Myers, Robert C.
Yale, Alexandre
author Casini, Horacio German
author_facet Casini, Horacio German
Huerta, Marina
Myers, Robert C.
Yale, Alexandre
author_role author
author2 Huerta, Marina
Myers, Robert C.
Yale, Alexandre
author2_role author
author
author
dc.subject.none.fl_str_mv Field Theories in Lower Dimensions
Renormalization Group
Topological Field Theories
Conformal and W Symmetry
topic Field Theories in Lower Dimensions
Renormalization Group
Topological Field Theories
Conformal and W Symmetry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mutual information is used as a purely geometrical regularization ofentanglement entropy applicable to any QFT. A coefficient in the mutualinformation between concentric circular entangling surfaces gives a preciseuniversal prescription for the monotonous quantity in the c-theorem for d=3.This is in principle computable using any regularization for the entropy, andin particular is a definition suitable for lattice models. We rederive theproof of the c-theorem for d=3 in terms of mutual information, and check ourarguments with holographic entanglement entropy, a free scalar field, and anextensive mutual information model.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá
Fil: Yale, Alexandre. Perimeter Institute for Theoretical Physics; Canadá. University of Waterloo; Canadá
description Mutual information is used as a purely geometrical regularization ofentanglement entropy applicable to any QFT. A coefficient in the mutualinformation between concentric circular entangling surfaces gives a preciseuniversal prescription for the monotonous quantity in the c-theorem for d=3.This is in principle computable using any regularization for the entropy, andin particular is a definition suitable for lattice models. We rederive theproof of the c-theorem for d=3 in terms of mutual information, and check ourarguments with holographic entanglement entropy, a free scalar field, and anextensive mutual information model.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45342
Casini, Horacio German; Huerta, Marina; Myers, Robert C.; Yale, Alexandre; Mutual information and the F-theorem; Springer Heidelberg; Journal of High Energy Physics; 2015; 3; 1-10-2015; 1-71
1029-8479
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45342
identifier_str_mv Casini, Horacio German; Huerta, Marina; Myers, Robert C.; Yale, Alexandre; Mutual information and the F-theorem; Springer Heidelberg; Journal of High Energy Physics; 2015; 3; 1-10-2015; 1-71
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.06195v1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2015)003
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2015)003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980087530520576
score 12.993085