Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence

Autores
Romero, Marcelo Ricardo; Veglia, Alicia Viviana; Amé, María Valeria; Bracamonte, Angel Guillermo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core?shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core?shell nanoparticles with diameters of 50?60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core?shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core?shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core?shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed.
Fil: Romero, Marcelo Ricardo. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
Fil: Veglia, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Amé, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina
Fil: Bracamonte, Angel Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Multi-layered Nanoarchitectures
Core-shell Nanoparticles
Nanospectroscopy
Metal Enhanced Fluorescence (MEF)
Nanochemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256519

id CONICETDig_fa21d35f83a50ecb0277f6f08c23d5a8
oai_identifier_str oai:ri.conicet.gov.ar:11336/256519
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced FluorescenceRomero, Marcelo RicardoVeglia, Alicia VivianaAmé, María ValeriaBracamonte, Angel GuillermoMulti-layered NanoarchitecturesCore-shell NanoparticlesNanospectroscopyMetal Enhanced Fluorescence (MEF)Nanochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core?shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core?shell nanoparticles with diameters of 50?60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core?shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core?shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core?shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed.Fil: Romero, Marcelo Ricardo. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; ArgentinaFil: Veglia, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Amé, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Bracamonte, Angel Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaMDPI2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256519Romero, Marcelo Ricardo; Veglia, Alicia Viviana; Amé, María Valeria; Bracamonte, Angel Guillermo; Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence; MDPI; Crystals; 14; 4; 3-2024; 1-292073-4352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/14/4/338info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst14040338info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:51Zoai:ri.conicet.gov.ar:11336/256519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:51.706CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
title Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
spellingShingle Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
Romero, Marcelo Ricardo
Multi-layered Nanoarchitectures
Core-shell Nanoparticles
Nanospectroscopy
Metal Enhanced Fluorescence (MEF)
Nanochemistry
title_short Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
title_full Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
title_fullStr Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
title_full_unstemmed Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
title_sort Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
dc.creator.none.fl_str_mv Romero, Marcelo Ricardo
Veglia, Alicia Viviana
Amé, María Valeria
Bracamonte, Angel Guillermo
author Romero, Marcelo Ricardo
author_facet Romero, Marcelo Ricardo
Veglia, Alicia Viviana
Amé, María Valeria
Bracamonte, Angel Guillermo
author_role author
author2 Veglia, Alicia Viviana
Amé, María Valeria
Bracamonte, Angel Guillermo
author2_role author
author
author
dc.subject.none.fl_str_mv Multi-layered Nanoarchitectures
Core-shell Nanoparticles
Nanospectroscopy
Metal Enhanced Fluorescence (MEF)
Nanochemistry
topic Multi-layered Nanoarchitectures
Core-shell Nanoparticles
Nanospectroscopy
Metal Enhanced Fluorescence (MEF)
Nanochemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core?shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core?shell nanoparticles with diameters of 50?60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core?shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core?shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core?shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed.
Fil: Romero, Marcelo Ricardo. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
Fil: Veglia, Alicia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Amé, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina
Fil: Bracamonte, Angel Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core?shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core?shell nanoparticles with diameters of 50?60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core?shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core?shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core?shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256519
Romero, Marcelo Ricardo; Veglia, Alicia Viviana; Amé, María Valeria; Bracamonte, Angel Guillermo; Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence; MDPI; Crystals; 14; 4; 3-2024; 1-29
2073-4352
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256519
identifier_str_mv Romero, Marcelo Ricardo; Veglia, Alicia Viviana; Amé, María Valeria; Bracamonte, Angel Guillermo; Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence; MDPI; Crystals; 14; 4; 3-2024; 1-29
2073-4352
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/14/4/338
info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst14040338
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269057881997312
score 13.13397