Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning

Autores
Franceschini, Esteban Andrés; Giménez, Gustavo; Lombardo, Maria Veronica; Zelcer, Andrés; Soler Illia, Galo Juan de Avila Arturo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.
Fil: Franceschini, Esteban Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Giménez, Gustavo. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion. Sub Gerencia Areas del Conocimiento. Direccion Tecnica de Micro y Nanotecnologias. Departamento Nanomateriales Funcionales.; Argentina
Fil: Lombardo, Maria Veronica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
AEROSOL PROCESSING
CORE–SHELL
MESOPOROUS MATERIALS
SILICA
TITANIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183137

id CONICETDig_44f56e1006bd38b1658acbe78604a61f
oai_identifier_str oai:ri.conicet.gov.ar:11336/183137
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuningFranceschini, Esteban AndrésGiménez, GustavoLombardo, Maria VeronicaZelcer, AndrésSoler Illia, Galo Juan de Avila ArturoAEROSOL PROCESSINGCORE–SHELLMESOPOROUS MATERIALSSILICATITANIAhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.Fil: Franceschini, Esteban Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Giménez, Gustavo. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion. Sub Gerencia Areas del Conocimiento. Direccion Tecnica de Micro y Nanotecnologias. Departamento Nanomateriales Funcionales.; ArgentinaFil: Lombardo, Maria Veronica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/183137Franceschini, Esteban Andrés; Giménez, Gustavo; Lombardo, Maria Veronica; Zelcer, Andrés; Soler Illia, Galo Juan de Avila Arturo; Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning; Springer; Journal of Sol-Gel Science and Technology; 102; 1; 11-2021; 208-2180928-0707CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10971-021-05680-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:02Zoai:ri.conicet.gov.ar:11336/183137instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:02.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
title Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
spellingShingle Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
Franceschini, Esteban Andrés
AEROSOL PROCESSING
CORE–SHELL
MESOPOROUS MATERIALS
SILICA
TITANIA
title_short Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
title_full Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
title_fullStr Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
title_full_unstemmed Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
title_sort Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning
dc.creator.none.fl_str_mv Franceschini, Esteban Andrés
Giménez, Gustavo
Lombardo, Maria Veronica
Zelcer, Andrés
Soler Illia, Galo Juan de Avila Arturo
author Franceschini, Esteban Andrés
author_facet Franceschini, Esteban Andrés
Giménez, Gustavo
Lombardo, Maria Veronica
Zelcer, Andrés
Soler Illia, Galo Juan de Avila Arturo
author_role author
author2 Giménez, Gustavo
Lombardo, Maria Veronica
Zelcer, Andrés
Soler Illia, Galo Juan de Avila Arturo
author2_role author
author
author
author
dc.subject.none.fl_str_mv AEROSOL PROCESSING
CORE–SHELL
MESOPOROUS MATERIALS
SILICA
TITANIA
topic AEROSOL PROCESSING
CORE–SHELL
MESOPOROUS MATERIALS
SILICA
TITANIA
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.
Fil: Franceschini, Esteban Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Giménez, Gustavo. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion. Sub Gerencia Areas del Conocimiento. Direccion Tecnica de Micro y Nanotecnologias. Departamento Nanomateriales Funcionales.; Argentina
Fil: Lombardo, Maria Veronica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183137
Franceschini, Esteban Andrés; Giménez, Gustavo; Lombardo, Maria Veronica; Zelcer, Andrés; Soler Illia, Galo Juan de Avila Arturo; Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning; Springer; Journal of Sol-Gel Science and Technology; 102; 1; 11-2021; 208-218
0928-0707
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183137
identifier_str_mv Franceschini, Esteban Andrés; Giménez, Gustavo; Lombardo, Maria Veronica; Zelcer, Andrés; Soler Illia, Galo Juan de Avila Arturo; Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning; Springer; Journal of Sol-Gel Science and Technology; 102; 1; 11-2021; 208-218
0928-0707
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10971-021-05680-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269888444366848
score 13.13397