Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
- Autores
- Heineken, Sigrid Bettina; Matusiak, Ewa; Paternostro, Victoria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.
Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Matusiak Ewa. Universidad de Viena; Austria
Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
APPROXIMATE RECONSTRUCTIONS
BANDLIMITED FUNCTIONS
CANONICAL DUALS
FRAMES
IRREGULAR TRANSLATES
RIESZ BASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93867
Ver los metadatos del registro completo
id |
CONICETDig_f9d25dc11f54757b65ffb2721c7c8e40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93867 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applicationsHeineken, Sigrid BettinaMatusiak, EwaPaternostro, VictoriaAPPROXIMATE RECONSTRUCTIONSBANDLIMITED FUNCTIONSCANONICAL DUALSFRAMESIRREGULAR TRANSLATESRIESZ BASEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Matusiak Ewa. Universidad de Viena; AustriaFil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93867Heineken, Sigrid Bettina; Matusiak, Ewa; Paternostro, Victoria; Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications; World Scientific; International Journal of Wavelets, Multiresolution and Information Processing; 12; 2; 3-2014; 1-17; 14500190219-6913CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219691314500192info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219691314500192info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:32Zoai:ri.conicet.gov.ar:11336/93867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:32.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
title |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
spellingShingle |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications Heineken, Sigrid Bettina APPROXIMATE RECONSTRUCTIONS BANDLIMITED FUNCTIONS CANONICAL DUALS FRAMES IRREGULAR TRANSLATES RIESZ BASES |
title_short |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
title_full |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
title_fullStr |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
title_full_unstemmed |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
title_sort |
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications |
dc.creator.none.fl_str_mv |
Heineken, Sigrid Bettina Matusiak, Ewa Paternostro, Victoria |
author |
Heineken, Sigrid Bettina |
author_facet |
Heineken, Sigrid Bettina Matusiak, Ewa Paternostro, Victoria |
author_role |
author |
author2 |
Matusiak, Ewa Paternostro, Victoria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
APPROXIMATE RECONSTRUCTIONS BANDLIMITED FUNCTIONS CANONICAL DUALS FRAMES IRREGULAR TRANSLATES RIESZ BASES |
topic |
APPROXIMATE RECONSTRUCTIONS BANDLIMITED FUNCTIONS CANONICAL DUALS FRAMES IRREGULAR TRANSLATES RIESZ BASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces. Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Matusiak Ewa. Universidad de Viena; Austria Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93867 Heineken, Sigrid Bettina; Matusiak, Ewa; Paternostro, Victoria; Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications; World Scientific; International Journal of Wavelets, Multiresolution and Information Processing; 12; 2; 3-2014; 1-17; 1450019 0219-6913 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93867 |
identifier_str_mv |
Heineken, Sigrid Bettina; Matusiak, Ewa; Paternostro, Victoria; Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications; World Scientific; International Journal of Wavelets, Multiresolution and Information Processing; 12; 2; 3-2014; 1-17; 1450019 0219-6913 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219691314500192 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219691314500192 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613426854232064 |
score |
13.070432 |