Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry

Autores
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; Ferrer, Mateus M.; Fernández Díaz, María Teresa; Fauth, Francois; Martínez, José Luis; Alonso, José Antonio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6–xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90–298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb–X bonds than that in Cs–X bonds. Diffuse reflectance ultraviolet–visible (UV–vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6–3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.
Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation Facility; Francia
Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Fauth, Francois. No especifíca;
Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
Materia
Zero Dimensional
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/232439

id CONICETDig_f94b74e0735fbfc3d8af9097079d5fab
oai_identifier_str oai:ri.conicet.gov.ar:11336/232439
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by MechanochemistryAbia, CarmenLopez, Carlos AlbertoGainza, JavierRodrigues, João Elias F. S.Fragoso, BrendaFerrer, Mateus M.Fernández Díaz, María TeresaFauth, FrancoisMartínez, José LuisAlonso, José AntonioZero Dimensionalhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6–xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90–298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb–X bonds than that in Cs–X bonds. Diffuse reflectance ultraviolet–visible (UV–vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6–3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Rodrigues, João Elias F. S.. European Synchrotron Radiation Facility; FranciaFil: Fragoso, Brenda. Universidade Federal de Pelotas; BrasilFil: Ferrer, Mateus M.. Universidade Federal de Pelotas; BrasilFil: Fernández Díaz, María Teresa. Institut Laue Langevin; FranciaFil: Fauth, Francois. No especifíca;Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaAmerican Chemical Society2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232439Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry; American Chemical Society; ACS Applied Materials and Interfaces; 15; 34; 8-2023; 40762-407711944-8252CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.3c07707info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:13Zoai:ri.conicet.gov.ar:11336/232439instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:13.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
title Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
spellingShingle Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
Abia, Carmen
Zero Dimensional
title_short Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
title_full Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
title_fullStr Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
title_full_unstemmed Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
title_sort Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry
dc.creator.none.fl_str_mv Abia, Carmen
Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Fernández Díaz, María Teresa
Fauth, Francois
Martínez, José Luis
Alonso, José Antonio
author Abia, Carmen
author_facet Abia, Carmen
Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Fernández Díaz, María Teresa
Fauth, Francois
Martínez, José Luis
Alonso, José Antonio
author_role author
author2 Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Fernández Díaz, María Teresa
Fauth, Francois
Martínez, José Luis
Alonso, José Antonio
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Zero Dimensional
topic Zero Dimensional
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6–xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90–298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb–X bonds than that in Cs–X bonds. Diffuse reflectance ultraviolet–visible (UV–vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6–3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.
Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation Facility; Francia
Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Fauth, Francois. No especifíca;
Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
description Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6–xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90–298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb–X bonds than that in Cs–X bonds. Diffuse reflectance ultraviolet–visible (UV–vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6–3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/232439
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry; American Chemical Society; ACS Applied Materials and Interfaces; 15; 34; 8-2023; 40762-40771
1944-8252
CONICET Digital
CONICET
url http://hdl.handle.net/11336/232439
identifier_str_mv Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural Features and Optical Properties of All-Inorganic Zero-Dimensional Halides Cs4PbBr6-xIx Obtained by Mechanochemistry; American Chemical Society; ACS Applied Materials and Interfaces; 15; 34; 8-2023; 40762-40771
1944-8252
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.3c07707
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781224553545728
score 12.982451