Cooling to absolute zero: The unattainability principle

Autores
Freitas, José Nahuel; Gallegos, Rodrigo; Masanes, Lluis; Paz, Juan Pablo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature, which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states among others—which can in turn be argued to imply that an infinite amount of time is required to access those resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad class of currently available experimental settings. In particular, the UP is here derived within a model of linear and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs at different temperatures.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gallegos, Rodrigo. Freie Universität Berlin; Alemania
Fil: Masanes, Lluis. University College London; Estados Unidos
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
TERMODINAMICA CUANTICA
ABSOLUTE ZERO
COOLING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/149132

id CONICETDig_98d9b2ded0b2bdcb4fce378c297c6069
oai_identifier_str oai:ri.conicet.gov.ar:11336/149132
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cooling to absolute zero: The unattainability principleFreitas, José NahuelGallegos, RodrigoMasanes, LluisPaz, Juan PabloTERMODINAMICA CUANTICAABSOLUTE ZEROCOOLINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature, which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states among others—which can in turn be argued to imply that an infinite amount of time is required to access those resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad class of currently available experimental settings. In particular, the UP is here derived within a model of linear and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs at different temperatures.Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gallegos, Rodrigo. Freie Universität Berlin; AlemaniaFil: Masanes, Lluis. University College London; Estados UnidosFil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringerBinder, Felix2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149132Freitas, José Nahuel; Gallegos, Rodrigo; Masanes, Lluis; Paz, Juan Pablo; Cooling to absolute zero: The unattainability principle; Springer; 2019; 599-622978-3-319-99046-0CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-99046-0_25info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-99046-0_25info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.06377info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:09Zoai:ri.conicet.gov.ar:11336/149132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:09.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cooling to absolute zero: The unattainability principle
title Cooling to absolute zero: The unattainability principle
spellingShingle Cooling to absolute zero: The unattainability principle
Freitas, José Nahuel
TERMODINAMICA CUANTICA
ABSOLUTE ZERO
COOLING
title_short Cooling to absolute zero: The unattainability principle
title_full Cooling to absolute zero: The unattainability principle
title_fullStr Cooling to absolute zero: The unattainability principle
title_full_unstemmed Cooling to absolute zero: The unattainability principle
title_sort Cooling to absolute zero: The unattainability principle
dc.creator.none.fl_str_mv Freitas, José Nahuel
Gallegos, Rodrigo
Masanes, Lluis
Paz, Juan Pablo
author Freitas, José Nahuel
author_facet Freitas, José Nahuel
Gallegos, Rodrigo
Masanes, Lluis
Paz, Juan Pablo
author_role author
author2 Gallegos, Rodrigo
Masanes, Lluis
Paz, Juan Pablo
author2_role author
author
author
dc.contributor.none.fl_str_mv Binder, Felix
dc.subject.none.fl_str_mv TERMODINAMICA CUANTICA
ABSOLUTE ZERO
COOLING
topic TERMODINAMICA CUANTICA
ABSOLUTE ZERO
COOLING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature, which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states among others—which can in turn be argued to imply that an infinite amount of time is required to access those resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad class of currently available experimental settings. In particular, the UP is here derived within a model of linear and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs at different temperatures.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gallegos, Rodrigo. Freie Universität Berlin; Alemania
Fil: Masanes, Lluis. University College London; Estados Unidos
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature, which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states among others—which can in turn be argued to imply that an infinite amount of time is required to access those resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad class of currently available experimental settings. In particular, the UP is here derived within a model of linear and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs at different temperatures.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/149132
Freitas, José Nahuel; Gallegos, Rodrigo; Masanes, Lluis; Paz, Juan Pablo; Cooling to absolute zero: The unattainability principle; Springer; 2019; 599-622
978-3-319-99046-0
CONICET Digital
CONICET
url http://hdl.handle.net/11336/149132
identifier_str_mv Freitas, José Nahuel; Gallegos, Rodrigo; Masanes, Lluis; Paz, Juan Pablo; Cooling to absolute zero: The unattainability principle; Springer; 2019; 599-622
978-3-319-99046-0
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-99046-0_25
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-99046-0_25
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.06377
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270147986849792
score 13.13397