Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
- Autores
- Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; Ferrer, Mateus M.; Nemes, Norbert M.; Dura, Oscar J.; Martínez, José Luis; Fernández Díaz, María Teresa; Alonso, José Antonio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.
Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; Francia
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; España
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil
Fil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; España
Fil: Dura, Oscar J.. Universidad de Castilla-La Mancha; España
Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España - Materia
-
mechanochemistry
RbSn2Br5
optical - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227420
Ver los metadatos del registro completo
id |
CONICETDig_24172b6568c54a53f82a65e32d1c822c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistryAbia, CarmenLopez, Carlos AlbertoGainza, JavierRodrigues, João Elias F. S.Fragoso, BrendaFerrer, Mateus M.Nemes, Norbert M.Dura, Oscar J.Martínez, José LuisFernández Díaz, María TeresaAlonso, José AntoniomechanochemistryRbSn2Br5opticalhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; FranciaFil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Fragoso, Brenda. Universidade Federal de Pelotas; BrasilFil: Ferrer, Mateus M.. Universidade Federal de Pelotas; BrasilFil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Dura, Oscar J.. Universidad de Castilla-La Mancha; EspañaFil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Fernández Díaz, María Teresa. Institut Laue Langevin; FranciaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaRoyal Society of Chemistry2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227420Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-18681466-8033CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d2ce01488binfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2023/ce/d2ce01488binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:20Zoai:ri.conicet.gov.ar:11336/227420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:20.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
title |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
spellingShingle |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry Abia, Carmen mechanochemistry RbSn2Br5 optical |
title_short |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
title_full |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
title_fullStr |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
title_full_unstemmed |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
title_sort |
Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry |
dc.creator.none.fl_str_mv |
Abia, Carmen Lopez, Carlos Alberto Gainza, Javier Rodrigues, João Elias F. S. Fragoso, Brenda Ferrer, Mateus M. Nemes, Norbert M. Dura, Oscar J. Martínez, José Luis Fernández Díaz, María Teresa Alonso, José Antonio |
author |
Abia, Carmen |
author_facet |
Abia, Carmen Lopez, Carlos Alberto Gainza, Javier Rodrigues, João Elias F. S. Fragoso, Brenda Ferrer, Mateus M. Nemes, Norbert M. Dura, Oscar J. Martínez, José Luis Fernández Díaz, María Teresa Alonso, José Antonio |
author_role |
author |
author2 |
Lopez, Carlos Alberto Gainza, Javier Rodrigues, João Elias F. S. Fragoso, Brenda Ferrer, Mateus M. Nemes, Norbert M. Dura, Oscar J. Martínez, José Luis Fernández Díaz, María Teresa Alonso, José Antonio |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
mechanochemistry RbSn2Br5 optical |
topic |
mechanochemistry RbSn2Br5 optical |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K. Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; Francia Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; España Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; España Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil Fil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; España Fil: Dura, Oscar J.. Universidad de Castilla-La Mancha; España Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España |
description |
Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227420 Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-1868 1466-8033 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227420 |
identifier_str_mv |
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-1868 1466-8033 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/d2ce01488b info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2023/ce/d2ce01488b |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613528449712128 |
score |
13.070432 |