Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry

Autores
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; Ferrer, Mateus M.; Nemes, Norbert M.; Dura, Oscar J.; Martínez, José Luis; Fernández Díaz, María Teresa; Alonso, José Antonio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.
Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; Francia
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; España
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil
Fil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; España
Fil: Dura, Oscar J.. Universidad de Castilla-La Mancha; España
Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
Materia
mechanochemistry
RbSn2Br5
optical
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227420

id CONICETDig_24172b6568c54a53f82a65e32d1c822c
oai_identifier_str oai:ri.conicet.gov.ar:11336/227420
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistryAbia, CarmenLopez, Carlos AlbertoGainza, JavierRodrigues, João Elias F. S.Fragoso, BrendaFerrer, Mateus M.Nemes, Norbert M.Dura, Oscar J.Martínez, José LuisFernández Díaz, María TeresaAlonso, José AntoniomechanochemistryRbSn2Br5opticalhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; FranciaFil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Fragoso, Brenda. Universidade Federal de Pelotas; BrasilFil: Ferrer, Mateus M.. Universidade Federal de Pelotas; BrasilFil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Dura, Oscar J.. Universidad de Castilla-La Mancha; EspañaFil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Fernández Díaz, María Teresa. Institut Laue Langevin; FranciaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; EspañaRoyal Society of Chemistry2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227420Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-18681466-8033CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/d2ce01488binfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2023/ce/d2ce01488binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:20Zoai:ri.conicet.gov.ar:11336/227420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:20.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
title Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
spellingShingle Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
Abia, Carmen
mechanochemistry
RbSn2Br5
optical
title_short Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
title_full Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
title_fullStr Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
title_full_unstemmed Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
title_sort Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry
dc.creator.none.fl_str_mv Abia, Carmen
Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Nemes, Norbert M.
Dura, Oscar J.
Martínez, José Luis
Fernández Díaz, María Teresa
Alonso, José Antonio
author Abia, Carmen
author_facet Abia, Carmen
Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Nemes, Norbert M.
Dura, Oscar J.
Martínez, José Luis
Fernández Díaz, María Teresa
Alonso, José Antonio
author_role author
author2 Lopez, Carlos Alberto
Gainza, Javier
Rodrigues, João Elias F. S.
Fragoso, Brenda
Ferrer, Mateus M.
Nemes, Norbert M.
Dura, Oscar J.
Martínez, José Luis
Fernández Díaz, María Teresa
Alonso, José Antonio
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv mechanochemistry
RbSn2Br5
optical
topic mechanochemistry
RbSn2Br5
optical
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.
Fil: Abia, Carmen. Instituto de Ciencia de Materiales de Madrid; España. Institut Laue Langevin; Francia
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina. Instituto de Ciencia de Materiales de Madrid; España
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fragoso, Brenda. Universidade Federal de Pelotas; Brasil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil
Fil: Nemes, Norbert M.. Universidad Complutense de Madrid; España. Instituto de Ciencia de Materiales de Madrid; España
Fil: Dura, Oscar J.. Universidad de Castilla-La Mancha; España
Fil: Martínez, José Luis. Instituto de Ciencia de Materiales de Madrid; España
Fil: Fernández Díaz, María Teresa. Institut Laue Langevin; Francia
Fil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España
description Two-dimensional (2D) layered metal halide perovskites have recently received a lot of attention due to their possible applications as photovoltaic and optoelectronic materials. Rubidium di-tin pentabromide, RbSn2Br5, is a promising lead-free alternative to its RbPb2Br5 counterpart. Its lack of toxic lead, improved stability, and tolerance to ambient conditions are a great step forward to be used in electronic devices. In contrast with lead-based halides, this sample has received less attention up to now. There have been no experimental studies on its transport parameters such as electronic conductivity, Seebeck coefficient, or thermal transport. Here, we describe how this material can be easily synthesized using a ball milling procedure, obtaining specimens with high crystallinity. TG measurements indicate total decomposition above ∼673 K, whereas DSC curves suggest melting and recrystallization at 562 K (heating run, endothermic) and 523 K (cooling run, exothermic), respectively. A structural analysis from room temperature up to 548 K from neutron powder diffraction (NPD) data allowed the determination of the Debye model parameters, providing information on the relative Rb-Br and Sn-Br chemical bonds. Synchrotron X-ray diffraction experiments confirmed a tetragonal structure (space group I4/mcm) and provided evidence on the presence of the Sn2+ lone electron pair (5s2) from a X-N study. Diffuse reflectance UV-vis spectroscopy yields an indirect optical gap of ∼3.08 eV, coincident with the literature and ab initio calculations. A maximum positive Seebeck coefficient of ∼2.3 × 104 μV K−1 is obtained at 440 K, which is one order of magnitude higher than those reported for other halide perovskites. We obtain an ultra-low thermal conductivity, below 0.2 W m−1 K−1 from 300 up to 550 K.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227420
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-1868
1466-8033
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227420
identifier_str_mv Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Fragoso, Brenda; et al.; Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry; Royal Society of Chemistry; CrystEngComm; 25; 13; 2-2023; 1857-1868
1466-8033
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/d2ce01488b
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2023/ce/d2ce01488b
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613528449712128
score 13.070432