Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
- Autores
- Colombo, Leonardo Jesus; Ferraro, Sebastián José; Martin de Diego, David
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.
Fil: Colombo, Leonardo Jesus. University of Michigan; Estados Unidos
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; España - Materia
-
DISCRETE VARIATIONAL CALCULUS
HIGHER-ORDER MECHANICS
OPTIMAL CONTROL
VARIATIONAL INTEGRATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48751
Ver los metadatos del registro completo
id |
CONICETDig_f8bc0a3c4fc84726ebadbc77df2fb1c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48751 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal ControlColombo, Leonardo JesusFerraro, Sebastián JoséMartin de Diego, DavidDISCRETE VARIATIONAL CALCULUSHIGHER-ORDER MECHANICSOPTIMAL CONTROLVARIATIONAL INTEGRATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.Fil: Colombo, Leonardo Jesus. University of Michigan; Estados UnidosFil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; EspañaSpringer2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48751Colombo, Leonardo Jesus; Ferraro, Sebastián José; Martin de Diego, David; Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control; Springer; Journal Of Nonlinear Science; 26; 6; 1-12-2016; 1615-16500938-89741432-1467CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00332-016-9314-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00332-016-9314-9info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.5766info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:36Zoai:ri.conicet.gov.ar:11336/48751instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:37.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
title |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
spellingShingle |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control Colombo, Leonardo Jesus DISCRETE VARIATIONAL CALCULUS HIGHER-ORDER MECHANICS OPTIMAL CONTROL VARIATIONAL INTEGRATORS |
title_short |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
title_full |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
title_fullStr |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
title_full_unstemmed |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
title_sort |
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control |
dc.creator.none.fl_str_mv |
Colombo, Leonardo Jesus Ferraro, Sebastián José Martin de Diego, David |
author |
Colombo, Leonardo Jesus |
author_facet |
Colombo, Leonardo Jesus Ferraro, Sebastián José Martin de Diego, David |
author_role |
author |
author2 |
Ferraro, Sebastián José Martin de Diego, David |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DISCRETE VARIATIONAL CALCULUS HIGHER-ORDER MECHANICS OPTIMAL CONTROL VARIATIONAL INTEGRATORS |
topic |
DISCRETE VARIATIONAL CALCULUS HIGHER-ORDER MECHANICS OPTIMAL CONTROL VARIATIONAL INTEGRATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem. Fil: Colombo, Leonardo Jesus. University of Michigan; Estados Unidos Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; España |
description |
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48751 Colombo, Leonardo Jesus; Ferraro, Sebastián José; Martin de Diego, David; Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control; Springer; Journal Of Nonlinear Science; 26; 6; 1-12-2016; 1615-1650 0938-8974 1432-1467 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48751 |
identifier_str_mv |
Colombo, Leonardo Jesus; Ferraro, Sebastián José; Martin de Diego, David; Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control; Springer; Journal Of Nonlinear Science; 26; 6; 1-12-2016; 1615-1650 0938-8974 1432-1467 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00332-016-9314-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00332-016-9314-9 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.5766 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614054784532480 |
score |
13.070432 |