The inverse problem of the calculus of variations for discrete systems
- Autores
- Barbero Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián José; Martin de Diego, David
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.
Fil: Barbero Liñán, María. Instituto de Ciencias Matemáticas; España. Universidad Politécnica de Madrid; España
Fil: Farré Puiggalí, Marta. Instituto de Ciencias Matemáticas; España
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España - Materia
-
DISCRETE SECOND ORDER DIFFERENCE EQUATIONS
DISCRETE VARIATIONAL CALCULUS
INVERSE PROBLEM
NONHOLONOMIC MECHANICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91505
Ver los metadatos del registro completo
id |
CONICETDig_aae1d36c041650149fa9597e13b537f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91505 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The inverse problem of the calculus of variations for discrete systemsBarbero Liñán, MaríaFarré Puiggalí, MartaFerraro, Sebastián JoséMartin de Diego, DavidDISCRETE SECOND ORDER DIFFERENCE EQUATIONSDISCRETE VARIATIONAL CALCULUSINVERSE PROBLEMNONHOLONOMIC MECHANICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.Fil: Barbero Liñán, María. Instituto de Ciencias Matemáticas; España. Universidad Politécnica de Madrid; EspañaFil: Farré Puiggalí, Marta. Instituto de Ciencias Matemáticas; EspañaFil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Martin de Diego, David. Instituto de Ciencias Matemáticas; EspañaIOP Publishing2018-04-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91505Barbero Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián José; Martin de Diego, David; The inverse problem of the calculus of variations for discrete systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 18; 9-4-2018; 1-39; 1852021751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aab546/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aab546info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1708.04123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:29Zoai:ri.conicet.gov.ar:11336/91505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:29.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The inverse problem of the calculus of variations for discrete systems |
title |
The inverse problem of the calculus of variations for discrete systems |
spellingShingle |
The inverse problem of the calculus of variations for discrete systems Barbero Liñán, María DISCRETE SECOND ORDER DIFFERENCE EQUATIONS DISCRETE VARIATIONAL CALCULUS INVERSE PROBLEM NONHOLONOMIC MECHANICS |
title_short |
The inverse problem of the calculus of variations for discrete systems |
title_full |
The inverse problem of the calculus of variations for discrete systems |
title_fullStr |
The inverse problem of the calculus of variations for discrete systems |
title_full_unstemmed |
The inverse problem of the calculus of variations for discrete systems |
title_sort |
The inverse problem of the calculus of variations for discrete systems |
dc.creator.none.fl_str_mv |
Barbero Liñán, María Farré Puiggalí, Marta Ferraro, Sebastián José Martin de Diego, David |
author |
Barbero Liñán, María |
author_facet |
Barbero Liñán, María Farré Puiggalí, Marta Ferraro, Sebastián José Martin de Diego, David |
author_role |
author |
author2 |
Farré Puiggalí, Marta Ferraro, Sebastián José Martin de Diego, David |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DISCRETE SECOND ORDER DIFFERENCE EQUATIONS DISCRETE VARIATIONAL CALCULUS INVERSE PROBLEM NONHOLONOMIC MECHANICS |
topic |
DISCRETE SECOND ORDER DIFFERENCE EQUATIONS DISCRETE VARIATIONAL CALCULUS INVERSE PROBLEM NONHOLONOMIC MECHANICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property. Fil: Barbero Liñán, María. Instituto de Ciencias Matemáticas; España. Universidad Politécnica de Madrid; España Fil: Farré Puiggalí, Marta. Instituto de Ciencias Matemáticas; España Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España |
description |
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91505 Barbero Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián José; Martin de Diego, David; The inverse problem of the calculus of variations for discrete systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 18; 9-4-2018; 1-39; 185202 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91505 |
identifier_str_mv |
Barbero Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián José; Martin de Diego, David; The inverse problem of the calculus of variations for discrete systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 18; 9-4-2018; 1-39; 185202 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aab546/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aab546 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1708.04123 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083511025401856 |
score |
13.22299 |