Comparative study of variational chaos indicators and ODEs' numerical integrators

Autores
Darriba, Luciano A.; Maffione, Nicolás Pablo; Cincotta, Pablo M.; Giordano, Claudia M.
Año de publicación
2012
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Fil: Darriba, Luciano A. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Darriba, Luciano A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Darriba, Luciano A. Instituto de Astrofísica La Plata; Argentina
Fil: Maffione, Nicolas P. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Maffione, Nicolas P. Instituto de Astrofísica La Plata; Argentina
Fil: Maffione, Nicolas P. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Cincotta, Pablo M. Instituto de Astrofísica La Plata; Argentina
Fil: Cincotta, Pablo M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentina
Fil: Cincotta, Pablo M. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia M. Instituto de Astrofísica de La Plata; Argentina.
Fil: Giordano, Claudia M. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.
Materia
Astronomía
Chaos Indicators
Numerical Integrators
Variational Equations
ODEs
Hamil-tonian Systems
Astronomía
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/2870

id RIDUNRN_9108e35790d5385a4c8a1d58c2c2e9e7
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/2870
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Comparative study of variational chaos indicators and ODEs' numerical integratorsDarriba, Luciano A.Maffione, Nicolás PabloCincotta, Pablo M.Giordano, Claudia M.AstronomíaChaos IndicatorsNumerical IntegratorsVariational EquationsODEsHamil-tonian SystemsAstronomíaFil: Darriba, Luciano A. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Darriba, Luciano A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Darriba, Luciano A. Instituto de Astrofísica La Plata; ArgentinaFil: Maffione, Nicolas P. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Maffione, Nicolas P. Instituto de Astrofísica La Plata; ArgentinaFil: Maffione, Nicolas P. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Cincotta, Pablo M. Instituto de Astrofísica La Plata; ArgentinaFil: Cincotta, Pablo M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; ArgentinaFil: Cincotta, Pablo M. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Giordano, Claudia M. Instituto de Astrofísica de La Plata; Argentina.Fil: Giordano, Claudia M. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Giordano, Claudia M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaThe reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.2012-05-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfDarriba, Luciano A., Maffione, Nicolas P., Cincotta, Pablo M. & Giordano, Claudia M. (2012). Comparative study of variational chaos indicators and ODEs' numerical integrators (review). World Scientific; International Journal Of Bifurcation And Chaos; 22; 1-350218-1274http://www.worldscientific.com/doi/abs/10.1142/S0218127412300339http://hdl.handle.net/11336/42610https://rid.unrn.edu.ar/jspui/handle/20.500.12049/2870http://dx.doi.org/10.1142/S0218127412300339spa22International Journal Of Bifurcation And Chaosinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-10-16T10:06:04Zoai:rid.unrn.edu.ar:20.500.12049/2870instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-10-16 10:06:04.352RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Comparative study of variational chaos indicators and ODEs' numerical integrators
title Comparative study of variational chaos indicators and ODEs' numerical integrators
spellingShingle Comparative study of variational chaos indicators and ODEs' numerical integrators
Darriba, Luciano A.
Astronomía
Chaos Indicators
Numerical Integrators
Variational Equations
ODEs
Hamil-tonian Systems
Astronomía
title_short Comparative study of variational chaos indicators and ODEs' numerical integrators
title_full Comparative study of variational chaos indicators and ODEs' numerical integrators
title_fullStr Comparative study of variational chaos indicators and ODEs' numerical integrators
title_full_unstemmed Comparative study of variational chaos indicators and ODEs' numerical integrators
title_sort Comparative study of variational chaos indicators and ODEs' numerical integrators
dc.creator.none.fl_str_mv Darriba, Luciano A.
Maffione, Nicolás Pablo
Cincotta, Pablo M.
Giordano, Claudia M.
author Darriba, Luciano A.
author_facet Darriba, Luciano A.
Maffione, Nicolás Pablo
Cincotta, Pablo M.
Giordano, Claudia M.
author_role author
author2 Maffione, Nicolás Pablo
Cincotta, Pablo M.
Giordano, Claudia M.
author2_role author
author
author
dc.subject.none.fl_str_mv Astronomía
Chaos Indicators
Numerical Integrators
Variational Equations
ODEs
Hamil-tonian Systems
Astronomía
topic Astronomía
Chaos Indicators
Numerical Integrators
Variational Equations
ODEs
Hamil-tonian Systems
Astronomía
dc.description.none.fl_txt_mv Fil: Darriba, Luciano A. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Darriba, Luciano A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Darriba, Luciano A. Instituto de Astrofísica La Plata; Argentina
Fil: Maffione, Nicolas P. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Maffione, Nicolas P. Instituto de Astrofísica La Plata; Argentina
Fil: Maffione, Nicolas P. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Cincotta, Pablo M. Instituto de Astrofísica La Plata; Argentina
Fil: Cincotta, Pablo M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentina
Fil: Cincotta, Pablo M. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia M. Instituto de Astrofísica de La Plata; Argentina.
Fil: Giordano, Claudia M. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.
description Fil: Darriba, Luciano A. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
publishDate 2012
dc.date.none.fl_str_mv 2012-05-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv Darriba, Luciano A., Maffione, Nicolas P., Cincotta, Pablo M. & Giordano, Claudia M. (2012). Comparative study of variational chaos indicators and ODEs' numerical integrators (review). World Scientific; International Journal Of Bifurcation And Chaos; 22; 1-35
0218-1274
http://www.worldscientific.com/doi/abs/10.1142/S0218127412300339
http://hdl.handle.net/11336/42610
https://rid.unrn.edu.ar/jspui/handle/20.500.12049/2870
http://dx.doi.org/10.1142/S0218127412300339
identifier_str_mv Darriba, Luciano A., Maffione, Nicolas P., Cincotta, Pablo M. & Giordano, Claudia M. (2012). Comparative study of variational chaos indicators and ODEs' numerical integrators (review). World Scientific; International Journal Of Bifurcation And Chaos; 22; 1-35
0218-1274
url http://www.worldscientific.com/doi/abs/10.1142/S0218127412300339
http://hdl.handle.net/11336/42610
https://rid.unrn.edu.ar/jspui/handle/20.500.12049/2870
http://dx.doi.org/10.1142/S0218127412300339
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 22
International Journal Of Bifurcation And Chaos
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1846145928057061376
score 12.712165