El enfoque de espacio de estado en el análisis de las series de tiempo financieras
- Autores
- Abril, María de Las Mercedes
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- El objetivo de este trabajo es examinar los métodos para tratar una gran variedad de datos con irregularidades que suceden en series de tiempo. Los modelos autorregresivos integrados de promedios móviles (ARIMA) son frecuentemente considerados como los que proveen la base principal para el modelado de series de tiempo. Ahora bien, dada la tecnología actual, puede haber alternativas más atractivas. Una nueva y poderosa solución fue ideada por Kalman (1960) y Kalman y Bucy (1961), usando la llamada representación de espacio de estado de una serie de tiempo. Esto provee una descripción muy compacta del modelo y está basado en el resultado conocido que dice que cualquier ecuación en diferencias (o diferencial) lineal de orden finito puede ser escrita como una ecuación vectorial en diferencias (o diferencial) lineal de primer orden. La ventaja de esta última representación es que involucra solamente dependencia de un paso, lo cual conduce a un algoritmo simple para calcular las predicciones de valores futuros de la serie conocido como el algoritmo del filtro y suavizador de Kalman. Presentaremos las ideas básicas de modelado estructural de series de tiempo y haremos notar la relación con los modelos autorregresivos integrados de promedios móviles.
The aim of this paper is to examine the methods for treating a variety of data with irregularities occurring in time series. The autoregressive integrated moving average models (or ARIMA models) are often considered to be the ones that provide the main basis for modeling any time series. However, given current technology, there may be more attractive alternatives. A powerful new solution was devised by Kalman (1960) and Kalman and Bucy (1961), using the so-called state space representation of a time series. This provides a very compact description of the model and is based on the known result that says any difference equation (or differential) that is linear and has a finite order can be written as a linear vector (or differential) equation in differences of first order. The advantage of the latter representation is that it involves only one step dependence, which leads to a simple algorithm to calculate predictions of future values of the series, known as the algorithm of the Kalman filter and smoother. We will introduce the basic ideas of structural modeling of time series and we will present the relationship with autoregressive integrated moving averages or ARIMA models.
Fil: Abril, María de Las Mercedes. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina - Materia
-
Espacio de Estado
Filtro de Kalman
Suavizador - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67474
Ver los metadatos del registro completo
id |
CONICETDig_f75d2807539788dbc00f3e0d911729de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67474 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
El enfoque de espacio de estado en el análisis de las series de tiempo financierasThe state space approach for the analysis of financial time seriesA abordagem de espaço de estado na análise de séries temporais financeirasAbril, María de Las MercedesEspacio de EstadoFiltro de KalmanSuavizadorhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5El objetivo de este trabajo es examinar los métodos para tratar una gran variedad de datos con irregularidades que suceden en series de tiempo. Los modelos autorregresivos integrados de promedios móviles (ARIMA) son frecuentemente considerados como los que proveen la base principal para el modelado de series de tiempo. Ahora bien, dada la tecnología actual, puede haber alternativas más atractivas. Una nueva y poderosa solución fue ideada por Kalman (1960) y Kalman y Bucy (1961), usando la llamada representación de espacio de estado de una serie de tiempo. Esto provee una descripción muy compacta del modelo y está basado en el resultado conocido que dice que cualquier ecuación en diferencias (o diferencial) lineal de orden finito puede ser escrita como una ecuación vectorial en diferencias (o diferencial) lineal de primer orden. La ventaja de esta última representación es que involucra solamente dependencia de un paso, lo cual conduce a un algoritmo simple para calcular las predicciones de valores futuros de la serie conocido como el algoritmo del filtro y suavizador de Kalman. Presentaremos las ideas básicas de modelado estructural de series de tiempo y haremos notar la relación con los modelos autorregresivos integrados de promedios móviles.The aim of this paper is to examine the methods for treating a variety of data with irregularities occurring in time series. The autoregressive integrated moving average models (or ARIMA models) are often considered to be the ones that provide the main basis for modeling any time series. However, given current technology, there may be more attractive alternatives. A powerful new solution was devised by Kalman (1960) and Kalman and Bucy (1961), using the so-called state space representation of a time series. This provides a very compact description of the model and is based on the known result that says any difference equation (or differential) that is linear and has a finite order can be written as a linear vector (or differential) equation in differences of first order. The advantage of the latter representation is that it involves only one step dependence, which leads to a simple algorithm to calculate predictions of future values of the series, known as the algorithm of the Kalman filter and smoother. We will introduce the basic ideas of structural modeling of time series and we will present the relationship with autoregressive integrated moving averages or ARIMA models.Fil: Abril, María de Las Mercedes. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaUniversidad Nacional de La Matanza. Departamento de Ciencias Económicas2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/67474Abril, María de Las Mercedes; El enfoque de espacio de estado en el análisis de las series de tiempo financieras; Universidad Nacional de La Matanza. Departamento de Ciencias Económicas; Revista RINCE; 8; 16; 9-2017; 1-251851-3239CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://rince.unlam.edu.ar/upload/adjuntos/articulo/132_Artculo_Elenfoquedeespaciodeestadoenelanlisisdelasseriesdetiempofinancieras_RInCENro15Vol8Agosto2017.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:03Zoai:ri.conicet.gov.ar:11336/67474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:03.434CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras The state space approach for the analysis of financial time series A abordagem de espaço de estado na análise de séries temporais financeiras |
title |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
spellingShingle |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras Abril, María de Las Mercedes Espacio de Estado Filtro de Kalman Suavizador |
title_short |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
title_full |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
title_fullStr |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
title_full_unstemmed |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
title_sort |
El enfoque de espacio de estado en el análisis de las series de tiempo financieras |
dc.creator.none.fl_str_mv |
Abril, María de Las Mercedes |
author |
Abril, María de Las Mercedes |
author_facet |
Abril, María de Las Mercedes |
author_role |
author |
dc.subject.none.fl_str_mv |
Espacio de Estado Filtro de Kalman Suavizador |
topic |
Espacio de Estado Filtro de Kalman Suavizador |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
El objetivo de este trabajo es examinar los métodos para tratar una gran variedad de datos con irregularidades que suceden en series de tiempo. Los modelos autorregresivos integrados de promedios móviles (ARIMA) son frecuentemente considerados como los que proveen la base principal para el modelado de series de tiempo. Ahora bien, dada la tecnología actual, puede haber alternativas más atractivas. Una nueva y poderosa solución fue ideada por Kalman (1960) y Kalman y Bucy (1961), usando la llamada representación de espacio de estado de una serie de tiempo. Esto provee una descripción muy compacta del modelo y está basado en el resultado conocido que dice que cualquier ecuación en diferencias (o diferencial) lineal de orden finito puede ser escrita como una ecuación vectorial en diferencias (o diferencial) lineal de primer orden. La ventaja de esta última representación es que involucra solamente dependencia de un paso, lo cual conduce a un algoritmo simple para calcular las predicciones de valores futuros de la serie conocido como el algoritmo del filtro y suavizador de Kalman. Presentaremos las ideas básicas de modelado estructural de series de tiempo y haremos notar la relación con los modelos autorregresivos integrados de promedios móviles. The aim of this paper is to examine the methods for treating a variety of data with irregularities occurring in time series. The autoregressive integrated moving average models (or ARIMA models) are often considered to be the ones that provide the main basis for modeling any time series. However, given current technology, there may be more attractive alternatives. A powerful new solution was devised by Kalman (1960) and Kalman and Bucy (1961), using the so-called state space representation of a time series. This provides a very compact description of the model and is based on the known result that says any difference equation (or differential) that is linear and has a finite order can be written as a linear vector (or differential) equation in differences of first order. The advantage of the latter representation is that it involves only one step dependence, which leads to a simple algorithm to calculate predictions of future values of the series, known as the algorithm of the Kalman filter and smoother. We will introduce the basic ideas of structural modeling of time series and we will present the relationship with autoregressive integrated moving averages or ARIMA models. Fil: Abril, María de Las Mercedes. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina |
description |
El objetivo de este trabajo es examinar los métodos para tratar una gran variedad de datos con irregularidades que suceden en series de tiempo. Los modelos autorregresivos integrados de promedios móviles (ARIMA) son frecuentemente considerados como los que proveen la base principal para el modelado de series de tiempo. Ahora bien, dada la tecnología actual, puede haber alternativas más atractivas. Una nueva y poderosa solución fue ideada por Kalman (1960) y Kalman y Bucy (1961), usando la llamada representación de espacio de estado de una serie de tiempo. Esto provee una descripción muy compacta del modelo y está basado en el resultado conocido que dice que cualquier ecuación en diferencias (o diferencial) lineal de orden finito puede ser escrita como una ecuación vectorial en diferencias (o diferencial) lineal de primer orden. La ventaja de esta última representación es que involucra solamente dependencia de un paso, lo cual conduce a un algoritmo simple para calcular las predicciones de valores futuros de la serie conocido como el algoritmo del filtro y suavizador de Kalman. Presentaremos las ideas básicas de modelado estructural de series de tiempo y haremos notar la relación con los modelos autorregresivos integrados de promedios móviles. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67474 Abril, María de Las Mercedes; El enfoque de espacio de estado en el análisis de las series de tiempo financieras; Universidad Nacional de La Matanza. Departamento de Ciencias Económicas; Revista RINCE; 8; 16; 9-2017; 1-25 1851-3239 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67474 |
identifier_str_mv |
Abril, María de Las Mercedes; El enfoque de espacio de estado en el análisis de las series de tiempo financieras; Universidad Nacional de La Matanza. Departamento de Ciencias Económicas; Revista RINCE; 8; 16; 9-2017; 1-25 1851-3239 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://rince.unlam.edu.ar/upload/adjuntos/articulo/132_Artculo_Elenfoquedeespaciodeestadoenelanlisisdelasseriesdetiempofinancieras_RInCENro15Vol8Agosto2017.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/msword application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Matanza. Departamento de Ciencias Económicas |
publisher.none.fl_str_mv |
Universidad Nacional de La Matanza. Departamento de Ciencias Económicas |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270029153828864 |
score |
13.13397 |