Maximun entropy principle and classical evolution equation with source terms

Autores
Schönfeldt, J-H.; Jimenez, N.; Plastino, Ángel Ricardo; Casas, M.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We devise a maximum entropy technique to construct (approximate) time-dependent solutions to evolution equations endowed with source terms and, consequently, not preserving normalization. In some special cases the method yields exact solutions. It is shown that the present implementation of the maximum entropy prescription always (even in the case of approximate solutions) preserves the exact functional relationship between the time derivative of the entropy and the timedependent solutions of the evolution equation. Other properties of the maximum entropy solutions and some illustrative examples are also discussed.
Fil: Schönfeldt, J-H.. University of Pretoria; Sudáfrica
Fil: Jimenez, N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Casas, M.. Universitat de les Illes Balears; España
Materia
Maximum Entropy
Ttime-Dependent Solutions
Evolution Equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42012

id CONICETDig_f62ecff6a04f4c4e72715f17f85da838
oai_identifier_str oai:ri.conicet.gov.ar:11336/42012
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Maximun entropy principle and classical evolution equation with source termsSchönfeldt, J-H.Jimenez, N.Plastino, Ángel RicardoCasas, M.Maximum EntropyTtime-Dependent SolutionsEvolution Equationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We devise a maximum entropy technique to construct (approximate) time-dependent solutions to evolution equations endowed with source terms and, consequently, not preserving normalization. In some special cases the method yields exact solutions. It is shown that the present implementation of the maximum entropy prescription always (even in the case of approximate solutions) preserves the exact functional relationship between the time derivative of the entropy and the timedependent solutions of the evolution equation. Other properties of the maximum entropy solutions and some illustrative examples are also discussed.Fil: Schönfeldt, J-H.. University of Pretoria; SudáfricaFil: Jimenez, N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Casas, M.. Universitat de les Illes Balears; EspañaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42012Schönfeldt, J-H.; Jimenez, N.; Plastino, Ángel Ricardo; Casas, M.; Maximun entropy principle and classical evolution equation with source terms; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 374; 12-2007; 573-5840378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.07.046info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437106008284?via%3Dihubinfo:eu-repo/semantics/altIdentifier/url/http://adsabs.harvard.edu/abs/2007PhyA..374..573Sinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:52Zoai:ri.conicet.gov.ar:11336/42012instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:52.948CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Maximun entropy principle and classical evolution equation with source terms
title Maximun entropy principle and classical evolution equation with source terms
spellingShingle Maximun entropy principle and classical evolution equation with source terms
Schönfeldt, J-H.
Maximum Entropy
Ttime-Dependent Solutions
Evolution Equations
title_short Maximun entropy principle and classical evolution equation with source terms
title_full Maximun entropy principle and classical evolution equation with source terms
title_fullStr Maximun entropy principle and classical evolution equation with source terms
title_full_unstemmed Maximun entropy principle and classical evolution equation with source terms
title_sort Maximun entropy principle and classical evolution equation with source terms
dc.creator.none.fl_str_mv Schönfeldt, J-H.
Jimenez, N.
Plastino, Ángel Ricardo
Casas, M.
author Schönfeldt, J-H.
author_facet Schönfeldt, J-H.
Jimenez, N.
Plastino, Ángel Ricardo
Casas, M.
author_role author
author2 Jimenez, N.
Plastino, Ángel Ricardo
Casas, M.
author2_role author
author
author
dc.subject.none.fl_str_mv Maximum Entropy
Ttime-Dependent Solutions
Evolution Equations
topic Maximum Entropy
Ttime-Dependent Solutions
Evolution Equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We devise a maximum entropy technique to construct (approximate) time-dependent solutions to evolution equations endowed with source terms and, consequently, not preserving normalization. In some special cases the method yields exact solutions. It is shown that the present implementation of the maximum entropy prescription always (even in the case of approximate solutions) preserves the exact functional relationship between the time derivative of the entropy and the timedependent solutions of the evolution equation. Other properties of the maximum entropy solutions and some illustrative examples are also discussed.
Fil: Schönfeldt, J-H.. University of Pretoria; Sudáfrica
Fil: Jimenez, N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Casas, M.. Universitat de les Illes Balears; España
description We devise a maximum entropy technique to construct (approximate) time-dependent solutions to evolution equations endowed with source terms and, consequently, not preserving normalization. In some special cases the method yields exact solutions. It is shown that the present implementation of the maximum entropy prescription always (even in the case of approximate solutions) preserves the exact functional relationship between the time derivative of the entropy and the timedependent solutions of the evolution equation. Other properties of the maximum entropy solutions and some illustrative examples are also discussed.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42012
Schönfeldt, J-H.; Jimenez, N.; Plastino, Ángel Ricardo; Casas, M.; Maximun entropy principle and classical evolution equation with source terms; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 374; 12-2007; 573-584
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42012
identifier_str_mv Schönfeldt, J-H.; Jimenez, N.; Plastino, Ángel Ricardo; Casas, M.; Maximun entropy principle and classical evolution equation with source terms; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 374; 12-2007; 573-584
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.07.046
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437106008284?via%3Dihub
info:eu-repo/semantics/altIdentifier/url/http://adsabs.harvard.edu/abs/2007PhyA..374..573S
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614234897383424
score 13.070432