Tomography reconstruction by entropy maximization with smoothing filtering
- Autores
- Barbuzza, Rosana Graciela; Lotito, Pablo Andres; Clausse, Alejandro
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The maximum entropy method (MEM) is a consistent way to treat the problem of tomography reconstruction where an image should be selected from a set of images that fit the measurement data. In this article, MEM is applied to image reconstruction from projections using an entropy formula modified by adding filter terms in order to eliminate the local noise. Numerical experiments were performed showing good results with local mean-square filter terms. The projection error can be used to estimate the weight of the filter term, providing a practical procedure to get improved solutions with limited sets of projections.
Fil: Barbuzza, Rosana Graciela. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; Argentina
Fil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; Argentina - Materia
-
MAXIMUM ENTROPY
TOMOGRAPHY
IMAGE PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242003
Ver los metadatos del registro completo
id |
CONICETDig_bf473e689516ec3e2e34585d090d2cb4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242003 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tomography reconstruction by entropy maximization with smoothing filteringBarbuzza, Rosana GracielaLotito, Pablo AndresClausse, AlejandroMAXIMUM ENTROPYTOMOGRAPHYIMAGE PROCESSINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The maximum entropy method (MEM) is a consistent way to treat the problem of tomography reconstruction where an image should be selected from a set of images that fit the measurement data. In this article, MEM is applied to image reconstruction from projections using an entropy formula modified by adding filter terms in order to eliminate the local noise. Numerical experiments were performed showing good results with local mean-square filter terms. The projection error can be used to estimate the weight of the filter term, providing a practical procedure to get improved solutions with limited sets of projections.Fil: Barbuzza, Rosana Graciela. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; ArgentinaFil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; ArgentinaTaylor & Francis Ltd2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242003Barbuzza, Rosana Graciela; Lotito, Pablo Andres; Clausse, Alejandro; Tomography reconstruction by entropy maximization with smoothing filtering; Taylor & Francis Ltd; Inverse Problems In Science And Engineering; 18; 5; 6-2010; 711-7221741-5977CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17415977.2010.492506info:eu-repo/semantics/altIdentifier/doi/10.1080/17415977.2010.492506info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:26Zoai:ri.conicet.gov.ar:11336/242003instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:26.69CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tomography reconstruction by entropy maximization with smoothing filtering |
title |
Tomography reconstruction by entropy maximization with smoothing filtering |
spellingShingle |
Tomography reconstruction by entropy maximization with smoothing filtering Barbuzza, Rosana Graciela MAXIMUM ENTROPY TOMOGRAPHY IMAGE PROCESSING |
title_short |
Tomography reconstruction by entropy maximization with smoothing filtering |
title_full |
Tomography reconstruction by entropy maximization with smoothing filtering |
title_fullStr |
Tomography reconstruction by entropy maximization with smoothing filtering |
title_full_unstemmed |
Tomography reconstruction by entropy maximization with smoothing filtering |
title_sort |
Tomography reconstruction by entropy maximization with smoothing filtering |
dc.creator.none.fl_str_mv |
Barbuzza, Rosana Graciela Lotito, Pablo Andres Clausse, Alejandro |
author |
Barbuzza, Rosana Graciela |
author_facet |
Barbuzza, Rosana Graciela Lotito, Pablo Andres Clausse, Alejandro |
author_role |
author |
author2 |
Lotito, Pablo Andres Clausse, Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MAXIMUM ENTROPY TOMOGRAPHY IMAGE PROCESSING |
topic |
MAXIMUM ENTROPY TOMOGRAPHY IMAGE PROCESSING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The maximum entropy method (MEM) is a consistent way to treat the problem of tomography reconstruction where an image should be selected from a set of images that fit the measurement data. In this article, MEM is applied to image reconstruction from projections using an entropy formula modified by adding filter terms in order to eliminate the local noise. Numerical experiments were performed showing good results with local mean-square filter terms. The projection error can be used to estimate the weight of the filter term, providing a practical procedure to get improved solutions with limited sets of projections. Fil: Barbuzza, Rosana Graciela. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; Argentina Fil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina Fil: Clausse, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; Argentina |
description |
The maximum entropy method (MEM) is a consistent way to treat the problem of tomography reconstruction where an image should be selected from a set of images that fit the measurement data. In this article, MEM is applied to image reconstruction from projections using an entropy formula modified by adding filter terms in order to eliminate the local noise. Numerical experiments were performed showing good results with local mean-square filter terms. The projection error can be used to estimate the weight of the filter term, providing a practical procedure to get improved solutions with limited sets of projections. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242003 Barbuzza, Rosana Graciela; Lotito, Pablo Andres; Clausse, Alejandro; Tomography reconstruction by entropy maximization with smoothing filtering; Taylor & Francis Ltd; Inverse Problems In Science And Engineering; 18; 5; 6-2010; 711-722 1741-5977 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242003 |
identifier_str_mv |
Barbuzza, Rosana Graciela; Lotito, Pablo Andres; Clausse, Alejandro; Tomography reconstruction by entropy maximization with smoothing filtering; Taylor & Francis Ltd; Inverse Problems In Science And Engineering; 18; 5; 6-2010; 711-722 1741-5977 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17415977.2010.492506 info:eu-repo/semantics/altIdentifier/doi/10.1080/17415977.2010.492506 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270081009057792 |
score |
13.13397 |