Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes

Autores
Romá, Federico José; Cugliandolo, Leticia F.; Lozano, Gustavo Sergio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long-time with a given accuracy.
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Cugliandolo, Leticia F.. Universite Pierre Et Marie Curie. Laboratoire de Physique Theorique Et Hautes Energies; Francia
Fil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina
Materia
MAGNETISM
NANOPARTICLES
SIMULATION
LANGEVIN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7463

id CONICETDig_2513866e599c0c187b152c7e4dad78e4
oai_identifier_str oai:ri.conicet.gov.ar:11336/7463
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemesRomá, Federico JoséCugliandolo, Leticia F.Lozano, Gustavo SergioMAGNETISMNANOPARTICLESSIMULATIONLANGEVINhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long-time with a given accuracy.Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Cugliandolo, Leticia F.. Universite Pierre Et Marie Curie. Laboratoire de Physique Theorique Et Hautes Energies; FranciaFil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7463Romá, Federico José; Cugliandolo, Leticia F.; Lozano, Gustavo Sergio; Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 90; 2; 8-2014; 23203-232031539-3755enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.023203info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.023203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:00Zoai:ri.conicet.gov.ar:11336/7463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:00.684CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
title Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
spellingShingle Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
Romá, Federico José
MAGNETISM
NANOPARTICLES
SIMULATION
LANGEVIN
title_short Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
title_full Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
title_fullStr Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
title_full_unstemmed Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
title_sort Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
dc.creator.none.fl_str_mv Romá, Federico José
Cugliandolo, Leticia F.
Lozano, Gustavo Sergio
author Romá, Federico José
author_facet Romá, Federico José
Cugliandolo, Leticia F.
Lozano, Gustavo Sergio
author_role author
author2 Cugliandolo, Leticia F.
Lozano, Gustavo Sergio
author2_role author
author
dc.subject.none.fl_str_mv MAGNETISM
NANOPARTICLES
SIMULATION
LANGEVIN
topic MAGNETISM
NANOPARTICLES
SIMULATION
LANGEVIN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long-time with a given accuracy.
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina
Fil: Cugliandolo, Leticia F.. Universite Pierre Et Marie Curie. Laboratoire de Physique Theorique Et Hautes Energies; Francia
Fil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina
description We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long-time with a given accuracy.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7463
Romá, Federico José; Cugliandolo, Leticia F.; Lozano, Gustavo Sergio; Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 90; 2; 8-2014; 23203-23203
1539-3755
url http://hdl.handle.net/11336/7463
identifier_str_mv Romá, Federico José; Cugliandolo, Leticia F.; Lozano, Gustavo Sergio; Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 90; 2; 8-2014; 23203-23203
1539-3755
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.023203
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.023203
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083529437347840
score 13.22299