Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space

Autores
Cirilo, Diego Julio; Sanchez, Norma G.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group representation action of the metaplectic group Mp(n). The Mp(n) Hermitian structure fully covers the symplectic Sp(n) group and, in certain cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2) Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2) states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset coherent states ⟨α,φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic in thedisk∣z = ω exp(−iφ)∣ < 1.For the general coset coherent states ∣α,φ⟩in the circle,the complex variable isz′ = z exp( −i α∗/2):Theanalyticfunction is modified by the complex phase (φ−α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e(−Imα/2) < 1 occurs when Imα ≠ 0 because of normalizability and Imα >0 because of the identity condition. The circle topology induced by the ⟨α,φ∣ coset coherent state also modifies the ratio of the disk due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to screening exponential factors exp(−2n^2) , e−(2n+1/2), and exp(−(2n+1/2)^2) for large n arising in the Mp(2) projections on them. The generalized Wigner function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Sanchez, Norma G.. Centre National de la Recherche Scientifique; Francia. Sorbonne University; Francia
Materia
MINIMAL GROUP REPRESENTATION PRINCIPLE
COHERENT STATES
CLASSICAL-QUANTUM DUALITY
METAPLECTIC GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274439

id CONICETDig_f3f74889e693f15f4e585ea7fa8572c1
oai_identifier_str oai:ri.conicet.gov.ar:11336/274439
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert spaceCirilo, Diego JulioSanchez, Norma G.MINIMAL GROUP REPRESENTATION PRINCIPLECOHERENT STATESCLASSICAL-QUANTUM DUALITYMETAPLECTIC GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group representation action of the metaplectic group Mp(n). The Mp(n) Hermitian structure fully covers the symplectic Sp(n) group and, in certain cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2) Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2) states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset coherent states ⟨α,φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic in thedisk∣z = ω exp(−iφ)∣ < 1.For the general coset coherent states ∣α,φ⟩in the circle,the complex variable isz′ = z exp( −i α∗/2):Theanalyticfunction is modified by the complex phase (φ−α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e(−Imα/2) < 1 occurs when Imα ≠ 0 because of normalizability and Imα >0 because of the identity condition. The circle topology induced by the ⟨α,φ∣ coset coherent state also modifies the ratio of the disk due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to screening exponential factors exp(−2n^2) , e−(2n+1/2), and exp(−(2n+1/2)^2) for large n arising in the Mp(2) projections on them. The generalized Wigner function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Sanchez, Norma G.. Centre National de la Recherche Scientifique; Francia. Sorbonne University; FranciaAmerican Institute of Physics2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274439Cirilo, Diego Julio; Sanchez, Norma G.; Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space; American Institute of Physics; APL Quantum; 2; 1; 1-2025; 1-142835-0103CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/apq/article/2/1/016104/3329660/Classical-ontological-dual-states-in-quantuminfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0247698info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:04:49Zoai:ri.conicet.gov.ar:11336/274439instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:04:49.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
title Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
spellingShingle Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
Cirilo, Diego Julio
MINIMAL GROUP REPRESENTATION PRINCIPLE
COHERENT STATES
CLASSICAL-QUANTUM DUALITY
METAPLECTIC GROUP
title_short Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
title_full Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
title_fullStr Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
title_full_unstemmed Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
title_sort Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space
dc.creator.none.fl_str_mv Cirilo, Diego Julio
Sanchez, Norma G.
author Cirilo, Diego Julio
author_facet Cirilo, Diego Julio
Sanchez, Norma G.
author_role author
author2 Sanchez, Norma G.
author2_role author
dc.subject.none.fl_str_mv MINIMAL GROUP REPRESENTATION PRINCIPLE
COHERENT STATES
CLASSICAL-QUANTUM DUALITY
METAPLECTIC GROUP
topic MINIMAL GROUP REPRESENTATION PRINCIPLE
COHERENT STATES
CLASSICAL-QUANTUM DUALITY
METAPLECTIC GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group representation action of the metaplectic group Mp(n). The Mp(n) Hermitian structure fully covers the symplectic Sp(n) group and, in certain cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2) Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2) states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset coherent states ⟨α,φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic in thedisk∣z = ω exp(−iφ)∣ < 1.For the general coset coherent states ∣α,φ⟩in the circle,the complex variable isz′ = z exp( −i α∗/2):Theanalyticfunction is modified by the complex phase (φ−α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e(−Imα/2) < 1 occurs when Imα ≠ 0 because of normalizability and Imα >0 because of the identity condition. The circle topology induced by the ⟨α,φ∣ coset coherent state also modifies the ratio of the disk due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to screening exponential factors exp(−2n^2) , e−(2n+1/2), and exp(−(2n+1/2)^2) for large n arising in the Mp(2) projections on them. The generalized Wigner function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Sanchez, Norma G.. Centre National de la Recherche Scientifique; Francia. Sorbonne University; Francia
description We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group representation action of the metaplectic group Mp(n). The Mp(n) Hermitian structure fully covers the symplectic Sp(n) group and, in certain cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2) Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2) states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset coherent states ⟨α,φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic in thedisk∣z = ω exp(−iφ)∣ < 1.For the general coset coherent states ∣α,φ⟩in the circle,the complex variable isz′ = z exp( −i α∗/2):Theanalyticfunction is modified by the complex phase (φ−α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e(−Imα/2) < 1 occurs when Imα ≠ 0 because of normalizability and Imα >0 because of the identity condition. The circle topology induced by the ⟨α,φ∣ coset coherent state also modifies the ratio of the disk due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to screening exponential factors exp(−2n^2) , e−(2n+1/2), and exp(−(2n+1/2)^2) for large n arising in the Mp(2) projections on them. The generalized Wigner function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274439
Cirilo, Diego Julio; Sanchez, Norma G.; Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space; American Institute of Physics; APL Quantum; 2; 1; 1-2025; 1-14
2835-0103
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274439
identifier_str_mv Cirilo, Diego Julio; Sanchez, Norma G.; Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space; American Institute of Physics; APL Quantum; 2; 1; 1-2025; 1-14
2835-0103
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/apq/article/2/1/016104/3329660/Classical-ontological-dual-states-in-quantum
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0247698
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873373315727360
score 13.011256