Optimal rearrangement problem and normalized obstacle problem in the fractional setting

Autores
Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cheng, Zhiwei. University of Nottingham Ningbo China; China
Fil: Mikayelyan, Hayk. University of Nottingham Ningbo China; China
Materia
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
OBSTACLE PROBLEM
OPTIMIZATION PROBLEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143893

id CONICETDig_6a4940548cae453984fb431a83661ad8
oai_identifier_str oai:ri.conicet.gov.ar:11336/143893
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal rearrangement problem and normalized obstacle problem in the fractional settingFernandez Bonder, JulianCheng, ZhiweiMikayelyan, HaykFRACTIONAL PARTIAL DIFFERENTIAL EQUATIONSOBSTACLE PROBLEMOPTIMIZATION PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cheng, Zhiwei. University of Nottingham Ningbo China; ChinaFil: Mikayelyan, Hayk. University of Nottingham Ningbo China; ChinaDe Gruyter2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143893Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-16062191-94962191-950XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2020-0067info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2020-0067/htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:30Zoai:ri.conicet.gov.ar:11336/143893instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:30.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal rearrangement problem and normalized obstacle problem in the fractional setting
title Optimal rearrangement problem and normalized obstacle problem in the fractional setting
spellingShingle Optimal rearrangement problem and normalized obstacle problem in the fractional setting
Fernandez Bonder, Julian
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
OBSTACLE PROBLEM
OPTIMIZATION PROBLEMS
title_short Optimal rearrangement problem and normalized obstacle problem in the fractional setting
title_full Optimal rearrangement problem and normalized obstacle problem in the fractional setting
title_fullStr Optimal rearrangement problem and normalized obstacle problem in the fractional setting
title_full_unstemmed Optimal rearrangement problem and normalized obstacle problem in the fractional setting
title_sort Optimal rearrangement problem and normalized obstacle problem in the fractional setting
dc.creator.none.fl_str_mv Fernandez Bonder, Julian
Cheng, Zhiwei
Mikayelyan, Hayk
author Fernandez Bonder, Julian
author_facet Fernandez Bonder, Julian
Cheng, Zhiwei
Mikayelyan, Hayk
author_role author
author2 Cheng, Zhiwei
Mikayelyan, Hayk
author2_role author
author
dc.subject.none.fl_str_mv FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
OBSTACLE PROBLEM
OPTIMIZATION PROBLEMS
topic FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
OBSTACLE PROBLEM
OPTIMIZATION PROBLEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cheng, Zhiwei. University of Nottingham Ningbo China; China
Fil: Mikayelyan, Hayk. University of Nottingham Ningbo China; China
description We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143893
Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-1606
2191-9496
2191-950X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143893
identifier_str_mv Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-1606
2191-9496
2191-950X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2020-0067
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2020-0067/html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268605870243840
score 13.13397