Optimal rearrangement problem and normalized obstacle problem in the fractional setting
- Autores
- Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cheng, Zhiwei. University of Nottingham Ningbo China; China
Fil: Mikayelyan, Hayk. University of Nottingham Ningbo China; China - Materia
-
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
OBSTACLE PROBLEM
OPTIMIZATION PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143893
Ver los metadatos del registro completo
id |
CONICETDig_6a4940548cae453984fb431a83661ad8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143893 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal rearrangement problem and normalized obstacle problem in the fractional settingFernandez Bonder, JulianCheng, ZhiweiMikayelyan, HaykFRACTIONAL PARTIAL DIFFERENTIAL EQUATIONSOBSTACLE PROBLEMOPTIMIZATION PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0.Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cheng, Zhiwei. University of Nottingham Ningbo China; ChinaFil: Mikayelyan, Hayk. University of Nottingham Ningbo China; ChinaDe Gruyter2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143893Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-16062191-94962191-950XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2020-0067info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2020-0067/htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:30Zoai:ri.conicet.gov.ar:11336/143893instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:30.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
title |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
spellingShingle |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting Fernandez Bonder, Julian FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS OBSTACLE PROBLEM OPTIMIZATION PROBLEMS |
title_short |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
title_full |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
title_fullStr |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
title_full_unstemmed |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
title_sort |
Optimal rearrangement problem and normalized obstacle problem in the fractional setting |
dc.creator.none.fl_str_mv |
Fernandez Bonder, Julian Cheng, Zhiwei Mikayelyan, Hayk |
author |
Fernandez Bonder, Julian |
author_facet |
Fernandez Bonder, Julian Cheng, Zhiwei Mikayelyan, Hayk |
author_role |
author |
author2 |
Cheng, Zhiwei Mikayelyan, Hayk |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS OBSTACLE PROBLEM OPTIMIZATION PROBLEMS |
topic |
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS OBSTACLE PROBLEM OPTIMIZATION PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0. Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cheng, Zhiwei. University of Nottingham Ningbo China; China Fil: Mikayelyan, Hayk. University of Nottingham Ningbo China; China |
description |
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (-Δ)s, 0 < s < 1, and the Gagliardo seminorm jujs. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satises -(-Δ)sU - x-(-Δ)sU+; 1 =U>0g, which happens to be the fractional analogue of the normalized obstacle problem Δu = xu>0. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143893 Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-1606 2191-9496 2191-950X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143893 |
identifier_str_mv |
Fernandez Bonder, Julian; Cheng, Zhiwei; Mikayelyan, Hayk; Optimal rearrangement problem and normalized obstacle problem in the fractional setting; De Gruyter; Advances in Nonlinear Analysis; 9; 1; 1-2020; 1592-1606 2191-9496 2191-950X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2020-0067 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2020-0067/html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268605870243840 |
score |
13.13397 |