Almacenamiento de hidrógeno

Autores
Amica, Guillermina; Meyer, Gabriel Omar; Gennari, Fabiana Cristina
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Actualmente el hidrógeno se almacena a escala comercial en forma gaseosa a presiones moderadas o en forma líquida en condiciones criogénicas. Para aplicaciones estacionarias en las que el volumen o peso del sistema no es limitante, se almacena en forma gaseosa en tubos de metal sin o con envoltura de materiales compuestos (tipo I y II). Aunque con mayor costo, los tubos envueltos en compuestos de fibra de carbono con revestimientos de metal o polímero (tipo III y IV) permiten trabajar a mayores presiones. Dado el alto consumo de energía del proceso de licuefacción y la complejidad de la infraestructura asociada, el hidrógeno líquido se limita a aplicaciones que requieren una alta densidad de energía. El almacenamiento basado en materiales sólidos, adsorbentes o hidruros, tiene limitaciones para su implementación a escala: costo de los materiales elevados, condiciones de operación exigentes, procesos complejos de síntesis. Cuando los estudios de seguridad garantizan la no reactividad con las cavidades subterráneas, el almacenamiento geológico constituye una alternativa interesante para almacenar grandes volúmenes durante periodos prolongados. El almacenamiento empleando líquidos orgánicos tiene como ventaja que se transportan como líquidos, pero la capacidad es limitada (4-7%p/p) y la deshidrogenación es energéticamente muy costosa. Finalmente, la opción de almacenarlo como amoníaco renovable es una oportunidad para la descarbonización en el sector químico. Teniendo en cuenta la gran versatilidad del uso del amoníaco, su reconversión a hidrógeno puede no ser necesaria ya que es un compuesto de alta demanda para la industria agrícola y puede ser utilizado directamente en la generación de energía.
Hydrogen is currently stored on a commercial scale in gaseous form at moderate pressures or in liquid form under cryogenic conditions. For stationary applications in which the volume or weight ofthe system is not a limitation, it is stored in gaseous form in metal tubes without or with a casing of composite materials (type I and II). Although more expensive, tubes wrapped in carbon fiber composites with metal or polymer coatings (type III and IV) allow to work at higher pressures. Given the high energy consumption of the liquefaction process and the complexity of the associated infrastructure, liquid hydrogen is limited to applications that require high energy density. Storage based on solid materials, adsorbents or hydrides, has limitations for its implementation at scale (high cost of materials, demanding operating conditions, complex synthesis processes). When safety studies guarantee non-reactivity with underground cavities, geological storage is an interesting alternative to store large volumes for long periods. Storage using organic liquids has theadvantage that they are transported as liquids, but it has a low storage capacity (4-7% p/p) and dehydrogenation is very expensive energetically.Finally, the option to store hydrogen as renewable ammonia presents an opportunity for decarbonization in the chemical sector. Taking into account the great versatility of the use of ammonia, its reconversion to hydrogen may not be necessary since it is a highly demanded compound for the agricultural industry and can be used directly in power generation.
Fil: Amica, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Meyer, Gabriel Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
HIDRÓGENO
ALMACENAMIENTO FÍSICO
HIDRUROS
AMONÍACO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/229549

id CONICETDig_f3167c4a5642ab69c847e835c910e3a2
oai_identifier_str oai:ri.conicet.gov.ar:11336/229549
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Almacenamiento de hidrógenoAmica, GuillerminaMeyer, Gabriel OmarGennari, Fabiana CristinaHIDRÓGENOALMACENAMIENTO FÍSICOHIDRUROSAMONÍACOhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Actualmente el hidrógeno se almacena a escala comercial en forma gaseosa a presiones moderadas o en forma líquida en condiciones criogénicas. Para aplicaciones estacionarias en las que el volumen o peso del sistema no es limitante, se almacena en forma gaseosa en tubos de metal sin o con envoltura de materiales compuestos (tipo I y II). Aunque con mayor costo, los tubos envueltos en compuestos de fibra de carbono con revestimientos de metal o polímero (tipo III y IV) permiten trabajar a mayores presiones. Dado el alto consumo de energía del proceso de licuefacción y la complejidad de la infraestructura asociada, el hidrógeno líquido se limita a aplicaciones que requieren una alta densidad de energía. El almacenamiento basado en materiales sólidos, adsorbentes o hidruros, tiene limitaciones para su implementación a escala: costo de los materiales elevados, condiciones de operación exigentes, procesos complejos de síntesis. Cuando los estudios de seguridad garantizan la no reactividad con las cavidades subterráneas, el almacenamiento geológico constituye una alternativa interesante para almacenar grandes volúmenes durante periodos prolongados. El almacenamiento empleando líquidos orgánicos tiene como ventaja que se transportan como líquidos, pero la capacidad es limitada (4-7%p/p) y la deshidrogenación es energéticamente muy costosa. Finalmente, la opción de almacenarlo como amoníaco renovable es una oportunidad para la descarbonización en el sector químico. Teniendo en cuenta la gran versatilidad del uso del amoníaco, su reconversión a hidrógeno puede no ser necesaria ya que es un compuesto de alta demanda para la industria agrícola y puede ser utilizado directamente en la generación de energía.Hydrogen is currently stored on a commercial scale in gaseous form at moderate pressures or in liquid form under cryogenic conditions. For stationary applications in which the volume or weight ofthe system is not a limitation, it is stored in gaseous form in metal tubes without or with a casing of composite materials (type I and II). Although more expensive, tubes wrapped in carbon fiber composites with metal or polymer coatings (type III and IV) allow to work at higher pressures. Given the high energy consumption of the liquefaction process and the complexity of the associated infrastructure, liquid hydrogen is limited to applications that require high energy density. Storage based on solid materials, adsorbents or hydrides, has limitations for its implementation at scale (high cost of materials, demanding operating conditions, complex synthesis processes). When safety studies guarantee non-reactivity with underground cavities, geological storage is an interesting alternative to store large volumes for long periods. Storage using organic liquids has theadvantage that they are transported as liquids, but it has a low storage capacity (4-7% p/p) and dehydrogenation is very expensive energetically.Finally, the option to store hydrogen as renewable ammonia presents an opportunity for decarbonization in the chemical sector. Taking into account the great versatility of the use of ammonia, its reconversion to hydrogen may not be necessary since it is a highly demanded compound for the agricultural industry and can be used directly in power generation.Fil: Amica, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Meyer, Gabriel Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAcademia Nacional de Ciencias Exactas, Físicas y NaturalesLaborde, Miguel ÁngelPerez, Teresa2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229549Amica, Guillermina; Meyer, Gabriel Omar; Gennari, Fabiana Cristina; Almacenamiento de hidrógeno; Academia Nacional de Ciencias Exactas, Físicas y Naturales; 18; 2023; 117-143978-987-4111-26-5CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/categoria.asp?id=793info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:02Zoai:ri.conicet.gov.ar:11336/229549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:02.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Almacenamiento de hidrógeno
title Almacenamiento de hidrógeno
spellingShingle Almacenamiento de hidrógeno
Amica, Guillermina
HIDRÓGENO
ALMACENAMIENTO FÍSICO
HIDRUROS
AMONÍACO
title_short Almacenamiento de hidrógeno
title_full Almacenamiento de hidrógeno
title_fullStr Almacenamiento de hidrógeno
title_full_unstemmed Almacenamiento de hidrógeno
title_sort Almacenamiento de hidrógeno
dc.creator.none.fl_str_mv Amica, Guillermina
Meyer, Gabriel Omar
Gennari, Fabiana Cristina
author Amica, Guillermina
author_facet Amica, Guillermina
Meyer, Gabriel Omar
Gennari, Fabiana Cristina
author_role author
author2 Meyer, Gabriel Omar
Gennari, Fabiana Cristina
author2_role author
author
dc.contributor.none.fl_str_mv Laborde, Miguel Ángel
Perez, Teresa
dc.subject.none.fl_str_mv HIDRÓGENO
ALMACENAMIENTO FÍSICO
HIDRUROS
AMONÍACO
topic HIDRÓGENO
ALMACENAMIENTO FÍSICO
HIDRUROS
AMONÍACO
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Actualmente el hidrógeno se almacena a escala comercial en forma gaseosa a presiones moderadas o en forma líquida en condiciones criogénicas. Para aplicaciones estacionarias en las que el volumen o peso del sistema no es limitante, se almacena en forma gaseosa en tubos de metal sin o con envoltura de materiales compuestos (tipo I y II). Aunque con mayor costo, los tubos envueltos en compuestos de fibra de carbono con revestimientos de metal o polímero (tipo III y IV) permiten trabajar a mayores presiones. Dado el alto consumo de energía del proceso de licuefacción y la complejidad de la infraestructura asociada, el hidrógeno líquido se limita a aplicaciones que requieren una alta densidad de energía. El almacenamiento basado en materiales sólidos, adsorbentes o hidruros, tiene limitaciones para su implementación a escala: costo de los materiales elevados, condiciones de operación exigentes, procesos complejos de síntesis. Cuando los estudios de seguridad garantizan la no reactividad con las cavidades subterráneas, el almacenamiento geológico constituye una alternativa interesante para almacenar grandes volúmenes durante periodos prolongados. El almacenamiento empleando líquidos orgánicos tiene como ventaja que se transportan como líquidos, pero la capacidad es limitada (4-7%p/p) y la deshidrogenación es energéticamente muy costosa. Finalmente, la opción de almacenarlo como amoníaco renovable es una oportunidad para la descarbonización en el sector químico. Teniendo en cuenta la gran versatilidad del uso del amoníaco, su reconversión a hidrógeno puede no ser necesaria ya que es un compuesto de alta demanda para la industria agrícola y puede ser utilizado directamente en la generación de energía.
Hydrogen is currently stored on a commercial scale in gaseous form at moderate pressures or in liquid form under cryogenic conditions. For stationary applications in which the volume or weight ofthe system is not a limitation, it is stored in gaseous form in metal tubes without or with a casing of composite materials (type I and II). Although more expensive, tubes wrapped in carbon fiber composites with metal or polymer coatings (type III and IV) allow to work at higher pressures. Given the high energy consumption of the liquefaction process and the complexity of the associated infrastructure, liquid hydrogen is limited to applications that require high energy density. Storage based on solid materials, adsorbents or hydrides, has limitations for its implementation at scale (high cost of materials, demanding operating conditions, complex synthesis processes). When safety studies guarantee non-reactivity with underground cavities, geological storage is an interesting alternative to store large volumes for long periods. Storage using organic liquids has theadvantage that they are transported as liquids, but it has a low storage capacity (4-7% p/p) and dehydrogenation is very expensive energetically.Finally, the option to store hydrogen as renewable ammonia presents an opportunity for decarbonization in the chemical sector. Taking into account the great versatility of the use of ammonia, its reconversion to hydrogen may not be necessary since it is a highly demanded compound for the agricultural industry and can be used directly in power generation.
Fil: Amica, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Meyer, Gabriel Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description Actualmente el hidrógeno se almacena a escala comercial en forma gaseosa a presiones moderadas o en forma líquida en condiciones criogénicas. Para aplicaciones estacionarias en las que el volumen o peso del sistema no es limitante, se almacena en forma gaseosa en tubos de metal sin o con envoltura de materiales compuestos (tipo I y II). Aunque con mayor costo, los tubos envueltos en compuestos de fibra de carbono con revestimientos de metal o polímero (tipo III y IV) permiten trabajar a mayores presiones. Dado el alto consumo de energía del proceso de licuefacción y la complejidad de la infraestructura asociada, el hidrógeno líquido se limita a aplicaciones que requieren una alta densidad de energía. El almacenamiento basado en materiales sólidos, adsorbentes o hidruros, tiene limitaciones para su implementación a escala: costo de los materiales elevados, condiciones de operación exigentes, procesos complejos de síntesis. Cuando los estudios de seguridad garantizan la no reactividad con las cavidades subterráneas, el almacenamiento geológico constituye una alternativa interesante para almacenar grandes volúmenes durante periodos prolongados. El almacenamiento empleando líquidos orgánicos tiene como ventaja que se transportan como líquidos, pero la capacidad es limitada (4-7%p/p) y la deshidrogenación es energéticamente muy costosa. Finalmente, la opción de almacenarlo como amoníaco renovable es una oportunidad para la descarbonización en el sector químico. Teniendo en cuenta la gran versatilidad del uso del amoníaco, su reconversión a hidrógeno puede no ser necesaria ya que es un compuesto de alta demanda para la industria agrícola y puede ser utilizado directamente en la generación de energía.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/229549
Amica, Guillermina; Meyer, Gabriel Omar; Gennari, Fabiana Cristina; Almacenamiento de hidrógeno; Academia Nacional de Ciencias Exactas, Físicas y Naturales; 18; 2023; 117-143
978-987-4111-26-5
CONICET Digital
CONICET
url http://hdl.handle.net/11336/229549
identifier_str_mv Amica, Guillermina; Meyer, Gabriel Omar; Gennari, Fabiana Cristina; Almacenamiento de hidrógeno; Academia Nacional de Ciencias Exactas, Físicas y Naturales; 18; 2023; 117-143
978-987-4111-26-5
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ancefn.org.ar/categoria.asp?id=793
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academia Nacional de Ciencias Exactas, Físicas y Naturales
publisher.none.fl_str_mv Academia Nacional de Ciencias Exactas, Físicas y Naturales
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613881994936320
score 13.070432