Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
- Autores
- Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; Vu, Tu N.; Raman, Chirag; Tejada, Julian; Huynh, Van Thong; Zhang, Guangyi; Cui, Tanming; Podder, Sharanyak; Chavda, Rushi; Pandey, Shubham; Upadhyay, Arpit; Padilla Buritica, Jorge I.; Barrera Causil, Carlos J.; Ji, Linying; Dollack, Felix; Kiyokawa, Kiyoshi; Liu, Huakun; Tagliazucchi, Enzo Rodolfo; Bugnon, Leandro Ariel; Bruno, Nicolás Marcelo; D Amelio, Tomás Ariel; Hinduja, Saurabh; Marmolejo Ramos, Fernando; Canavan, Shaun; Jivnani, Liza; Saganowski, Stanisław
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.
Fil: Coles, Nicholas A.. University of Florida; Estados Unidos
Fil: Perz, Bartosz. Wrocław University of Science and Technology; Polonia
Fil: Behnke, Maciej. Adam Mickiewicz University; Polonia
Fil: Eichstaedt, Johannes C.. University of Stanford; Estados Unidos
Fil: Kim, Soo Hyung. Harvard Medical School; Estados Unidos
Fil: Vu, Tu N.. Chonnam National University; Corea del Sur
Fil: Raman, Chirag. Delft University of Technology; Países Bajos
Fil: Tejada, Julian. Universidade Federal de Sergipe; Brasil
Fil: Huynh, Van Thong. FPT University; Vietnam
Fil: Zhang, Guangyi. Harvard Medical School; Estados Unidos
Fil: Cui, Tanming. No especifíca;
Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; India
Fil: Chavda, Rushi. Indian Institute of Technology Bombay; India
Fil: Pandey, Shubham. Indian Institute of Technology Bombay; India
Fil: Upadhyay, Arpit. Indian Institute of Technology Bombay; India
Fil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Ji, Linying. Montana State University; Estados Unidos
Fil: Dollack, Felix. Nara Institute of Science and Technology; Japón
Fil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; Japón
Fil: Liu, Huakun. Nara Institute of Science and Technology; Japón
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Hinduja, Saurabh. University of South Florida; Estados Unidos
Fil: Marmolejo Ramos, Fernando. Flinders University.; Australia
Fil: Canavan, Shaun. University of South Florida; Estados Unidos
Fil: Jivnani, Liza. University of South Florida; Estados Unidos
Fil: Saganowski, Stanisław. Wrocław University of Science and Technology; Polonia - Materia
-
machine learning
affective computing
physiological signals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275082
Ver los metadatos del registro completo
| id |
CONICETDig_f2d36a851235be7c65ba6e9654a90e11 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275082 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experienceColes, Nicholas A.Perz, BartoszBehnke, MaciejEichstaedt, Johannes C.Kim, Soo HyungVu, Tu N.Raman, ChiragTejada, JulianHuynh, Van ThongZhang, GuangyiCui, TanmingPodder, SharanyakChavda, RushiPandey, ShubhamUpadhyay, ArpitPadilla Buritica, Jorge I.Barrera Causil, Carlos J.Ji, LinyingDollack, FelixKiyokawa, KiyoshiLiu, HuakunTagliazucchi, Enzo RodolfoBugnon, Leandro ArielBruno, Nicolás MarceloD Amelio, Tomás ArielHinduja, SaurabhMarmolejo Ramos, FernandoCanavan, ShaunJivnani, LizaSaganowski, Stanisławmachine learningaffective computingphysiological signalshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.Fil: Coles, Nicholas A.. University of Florida; Estados UnidosFil: Perz, Bartosz. Wrocław University of Science and Technology; PoloniaFil: Behnke, Maciej. Adam Mickiewicz University; PoloniaFil: Eichstaedt, Johannes C.. University of Stanford; Estados UnidosFil: Kim, Soo Hyung. Harvard Medical School; Estados UnidosFil: Vu, Tu N.. Chonnam National University; Corea del SurFil: Raman, Chirag. Delft University of Technology; Países BajosFil: Tejada, Julian. Universidade Federal de Sergipe; BrasilFil: Huynh, Van Thong. FPT University; VietnamFil: Zhang, Guangyi. Harvard Medical School; Estados UnidosFil: Cui, Tanming. No especifíca;Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; IndiaFil: Chavda, Rushi. Indian Institute of Technology Bombay; IndiaFil: Pandey, Shubham. Indian Institute of Technology Bombay; IndiaFil: Upadhyay, Arpit. Indian Institute of Technology Bombay; IndiaFil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; ColombiaFil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; ColombiaFil: Ji, Linying. Montana State University; Estados UnidosFil: Dollack, Felix. Nara Institute of Science and Technology; JapónFil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; JapónFil: Liu, Huakun. Nara Institute of Science and Technology; JapónFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Hinduja, Saurabh. University of South Florida; Estados UnidosFil: Marmolejo Ramos, Fernando. Flinders University.; AustraliaFil: Canavan, Shaun. University of South Florida; Estados UnidosFil: Jivnani, Liza. University of South Florida; Estados UnidosFil: Saganowski, Stanisław. Wrocław University of Science and Technology; PoloniaRoyal Society of Chemistry2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275082Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-132054-5703CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.241778info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.241778info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:52:06Zoai:ri.conicet.gov.ar:11336/275082instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:52:06.402CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| title |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| spellingShingle |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience Coles, Nicholas A. machine learning affective computing physiological signals |
| title_short |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| title_full |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| title_fullStr |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| title_full_unstemmed |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| title_sort |
Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience |
| dc.creator.none.fl_str_mv |
Coles, Nicholas A. Perz, Bartosz Behnke, Maciej Eichstaedt, Johannes C. Kim, Soo Hyung Vu, Tu N. Raman, Chirag Tejada, Julian Huynh, Van Thong Zhang, Guangyi Cui, Tanming Podder, Sharanyak Chavda, Rushi Pandey, Shubham Upadhyay, Arpit Padilla Buritica, Jorge I. Barrera Causil, Carlos J. Ji, Linying Dollack, Felix Kiyokawa, Kiyoshi Liu, Huakun Tagliazucchi, Enzo Rodolfo Bugnon, Leandro Ariel Bruno, Nicolás Marcelo D Amelio, Tomás Ariel Hinduja, Saurabh Marmolejo Ramos, Fernando Canavan, Shaun Jivnani, Liza Saganowski, Stanisław |
| author |
Coles, Nicholas A. |
| author_facet |
Coles, Nicholas A. Perz, Bartosz Behnke, Maciej Eichstaedt, Johannes C. Kim, Soo Hyung Vu, Tu N. Raman, Chirag Tejada, Julian Huynh, Van Thong Zhang, Guangyi Cui, Tanming Podder, Sharanyak Chavda, Rushi Pandey, Shubham Upadhyay, Arpit Padilla Buritica, Jorge I. Barrera Causil, Carlos J. Ji, Linying Dollack, Felix Kiyokawa, Kiyoshi Liu, Huakun Tagliazucchi, Enzo Rodolfo Bugnon, Leandro Ariel Bruno, Nicolás Marcelo D Amelio, Tomás Ariel Hinduja, Saurabh Marmolejo Ramos, Fernando Canavan, Shaun Jivnani, Liza Saganowski, Stanisław |
| author_role |
author |
| author2 |
Perz, Bartosz Behnke, Maciej Eichstaedt, Johannes C. Kim, Soo Hyung Vu, Tu N. Raman, Chirag Tejada, Julian Huynh, Van Thong Zhang, Guangyi Cui, Tanming Podder, Sharanyak Chavda, Rushi Pandey, Shubham Upadhyay, Arpit Padilla Buritica, Jorge I. Barrera Causil, Carlos J. Ji, Linying Dollack, Felix Kiyokawa, Kiyoshi Liu, Huakun Tagliazucchi, Enzo Rodolfo Bugnon, Leandro Ariel Bruno, Nicolás Marcelo D Amelio, Tomás Ariel Hinduja, Saurabh Marmolejo Ramos, Fernando Canavan, Shaun Jivnani, Liza Saganowski, Stanisław |
| author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
machine learning affective computing physiological signals |
| topic |
machine learning affective computing physiological signals |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond. Fil: Coles, Nicholas A.. University of Florida; Estados Unidos Fil: Perz, Bartosz. Wrocław University of Science and Technology; Polonia Fil: Behnke, Maciej. Adam Mickiewicz University; Polonia Fil: Eichstaedt, Johannes C.. University of Stanford; Estados Unidos Fil: Kim, Soo Hyung. Harvard Medical School; Estados Unidos Fil: Vu, Tu N.. Chonnam National University; Corea del Sur Fil: Raman, Chirag. Delft University of Technology; Países Bajos Fil: Tejada, Julian. Universidade Federal de Sergipe; Brasil Fil: Huynh, Van Thong. FPT University; Vietnam Fil: Zhang, Guangyi. Harvard Medical School; Estados Unidos Fil: Cui, Tanming. No especifíca; Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; India Fil: Chavda, Rushi. Indian Institute of Technology Bombay; India Fil: Pandey, Shubham. Indian Institute of Technology Bombay; India Fil: Upadhyay, Arpit. Indian Institute of Technology Bombay; India Fil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; Colombia Fil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; Colombia Fil: Ji, Linying. Montana State University; Estados Unidos Fil: Dollack, Felix. Nara Institute of Science and Technology; Japón Fil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; Japón Fil: Liu, Huakun. Nara Institute of Science and Technology; Japón Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Hinduja, Saurabh. University of South Florida; Estados Unidos Fil: Marmolejo Ramos, Fernando. Flinders University.; Australia Fil: Canavan, Shaun. University of South Florida; Estados Unidos Fil: Jivnani, Liza. University of South Florida; Estados Unidos Fil: Saganowski, Stanisław. Wrocław University of Science and Technology; Polonia |
| description |
Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275082 Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-13 2054-5703 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275082 |
| identifier_str_mv |
Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-13 2054-5703 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.241778 info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.241778 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850504984906432512 |
| score |
13.275514 |