Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience

Autores
Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; Vu, Tu N.; Raman, Chirag; Tejada, Julian; Huynh, Van Thong; Zhang, Guangyi; Cui, Tanming; Podder, Sharanyak; Chavda, Rushi; Pandey, Shubham; Upadhyay, Arpit; Padilla Buritica, Jorge I.; Barrera Causil, Carlos J.; Ji, Linying; Dollack, Felix; Kiyokawa, Kiyoshi; Liu, Huakun; Tagliazucchi, Enzo Rodolfo; Bugnon, Leandro Ariel; Bruno, Nicolás Marcelo; D Amelio, Tomás Ariel; Hinduja, Saurabh; Marmolejo Ramos, Fernando; Canavan, Shaun; Jivnani, Liza; Saganowski, Stanisław
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.
Fil: Coles, Nicholas A.. University of Florida; Estados Unidos
Fil: Perz, Bartosz. Wrocław University of Science and Technology; Polonia
Fil: Behnke, Maciej. Adam Mickiewicz University; Polonia
Fil: Eichstaedt, Johannes C.. University of Stanford; Estados Unidos
Fil: Kim, Soo Hyung. Harvard Medical School; Estados Unidos
Fil: Vu, Tu N.. Chonnam National University; Corea del Sur
Fil: Raman, Chirag. Delft University of Technology; Países Bajos
Fil: Tejada, Julian. Universidade Federal de Sergipe; Brasil
Fil: Huynh, Van Thong. FPT University; Vietnam
Fil: Zhang, Guangyi. Harvard Medical School; Estados Unidos
Fil: Cui, Tanming. No especifíca;
Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; India
Fil: Chavda, Rushi. Indian Institute of Technology Bombay; India
Fil: Pandey, Shubham. Indian Institute of Technology Bombay; India
Fil: Upadhyay, Arpit. Indian Institute of Technology Bombay; India
Fil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Ji, Linying. Montana State University; Estados Unidos
Fil: Dollack, Felix. Nara Institute of Science and Technology; Japón
Fil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; Japón
Fil: Liu, Huakun. Nara Institute of Science and Technology; Japón
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Hinduja, Saurabh. University of South Florida; Estados Unidos
Fil: Marmolejo Ramos, Fernando. Flinders University.; Australia
Fil: Canavan, Shaun. University of South Florida; Estados Unidos
Fil: Jivnani, Liza. University of South Florida; Estados Unidos
Fil: Saganowski, Stanisław. Wrocław University of Science and Technology; Polonia
Materia
machine learning
affective computing
physiological signals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275082

id CONICETDig_f2d36a851235be7c65ba6e9654a90e11
oai_identifier_str oai:ri.conicet.gov.ar:11336/275082
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experienceColes, Nicholas A.Perz, BartoszBehnke, MaciejEichstaedt, Johannes C.Kim, Soo HyungVu, Tu N.Raman, ChiragTejada, JulianHuynh, Van ThongZhang, GuangyiCui, TanmingPodder, SharanyakChavda, RushiPandey, ShubhamUpadhyay, ArpitPadilla Buritica, Jorge I.Barrera Causil, Carlos J.Ji, LinyingDollack, FelixKiyokawa, KiyoshiLiu, HuakunTagliazucchi, Enzo RodolfoBugnon, Leandro ArielBruno, Nicolás MarceloD Amelio, Tomás ArielHinduja, SaurabhMarmolejo Ramos, FernandoCanavan, ShaunJivnani, LizaSaganowski, Stanisławmachine learningaffective computingphysiological signalshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.Fil: Coles, Nicholas A.. University of Florida; Estados UnidosFil: Perz, Bartosz. Wrocław University of Science and Technology; PoloniaFil: Behnke, Maciej. Adam Mickiewicz University; PoloniaFil: Eichstaedt, Johannes C.. University of Stanford; Estados UnidosFil: Kim, Soo Hyung. Harvard Medical School; Estados UnidosFil: Vu, Tu N.. Chonnam National University; Corea del SurFil: Raman, Chirag. Delft University of Technology; Países BajosFil: Tejada, Julian. Universidade Federal de Sergipe; BrasilFil: Huynh, Van Thong. FPT University; VietnamFil: Zhang, Guangyi. Harvard Medical School; Estados UnidosFil: Cui, Tanming. No especifíca;Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; IndiaFil: Chavda, Rushi. Indian Institute of Technology Bombay; IndiaFil: Pandey, Shubham. Indian Institute of Technology Bombay; IndiaFil: Upadhyay, Arpit. Indian Institute of Technology Bombay; IndiaFil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; ColombiaFil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; ColombiaFil: Ji, Linying. Montana State University; Estados UnidosFil: Dollack, Felix. Nara Institute of Science and Technology; JapónFil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; JapónFil: Liu, Huakun. Nara Institute of Science and Technology; JapónFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Hinduja, Saurabh. University of South Florida; Estados UnidosFil: Marmolejo Ramos, Fernando. Flinders University.; AustraliaFil: Canavan, Shaun. University of South Florida; Estados UnidosFil: Jivnani, Liza. University of South Florida; Estados UnidosFil: Saganowski, Stanisław. Wrocław University of Science and Technology; PoloniaRoyal Society of Chemistry2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275082Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-132054-5703CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.241778info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.241778info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:52:06Zoai:ri.conicet.gov.ar:11336/275082instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:52:06.402CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
title Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
spellingShingle Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
Coles, Nicholas A.
machine learning
affective computing
physiological signals
title_short Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
title_full Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
title_fullStr Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
title_full_unstemmed Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
title_sort Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience
dc.creator.none.fl_str_mv Coles, Nicholas A.
Perz, Bartosz
Behnke, Maciej
Eichstaedt, Johannes C.
Kim, Soo Hyung
Vu, Tu N.
Raman, Chirag
Tejada, Julian
Huynh, Van Thong
Zhang, Guangyi
Cui, Tanming
Podder, Sharanyak
Chavda, Rushi
Pandey, Shubham
Upadhyay, Arpit
Padilla Buritica, Jorge I.
Barrera Causil, Carlos J.
Ji, Linying
Dollack, Felix
Kiyokawa, Kiyoshi
Liu, Huakun
Tagliazucchi, Enzo Rodolfo
Bugnon, Leandro Ariel
Bruno, Nicolás Marcelo
D Amelio, Tomás Ariel
Hinduja, Saurabh
Marmolejo Ramos, Fernando
Canavan, Shaun
Jivnani, Liza
Saganowski, Stanisław
author Coles, Nicholas A.
author_facet Coles, Nicholas A.
Perz, Bartosz
Behnke, Maciej
Eichstaedt, Johannes C.
Kim, Soo Hyung
Vu, Tu N.
Raman, Chirag
Tejada, Julian
Huynh, Van Thong
Zhang, Guangyi
Cui, Tanming
Podder, Sharanyak
Chavda, Rushi
Pandey, Shubham
Upadhyay, Arpit
Padilla Buritica, Jorge I.
Barrera Causil, Carlos J.
Ji, Linying
Dollack, Felix
Kiyokawa, Kiyoshi
Liu, Huakun
Tagliazucchi, Enzo Rodolfo
Bugnon, Leandro Ariel
Bruno, Nicolás Marcelo
D Amelio, Tomás Ariel
Hinduja, Saurabh
Marmolejo Ramos, Fernando
Canavan, Shaun
Jivnani, Liza
Saganowski, Stanisław
author_role author
author2 Perz, Bartosz
Behnke, Maciej
Eichstaedt, Johannes C.
Kim, Soo Hyung
Vu, Tu N.
Raman, Chirag
Tejada, Julian
Huynh, Van Thong
Zhang, Guangyi
Cui, Tanming
Podder, Sharanyak
Chavda, Rushi
Pandey, Shubham
Upadhyay, Arpit
Padilla Buritica, Jorge I.
Barrera Causil, Carlos J.
Ji, Linying
Dollack, Felix
Kiyokawa, Kiyoshi
Liu, Huakun
Tagliazucchi, Enzo Rodolfo
Bugnon, Leandro Ariel
Bruno, Nicolás Marcelo
D Amelio, Tomás Ariel
Hinduja, Saurabh
Marmolejo Ramos, Fernando
Canavan, Shaun
Jivnani, Liza
Saganowski, Stanisław
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv machine learning
affective computing
physiological signals
topic machine learning
affective computing
physiological signals
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.
Fil: Coles, Nicholas A.. University of Florida; Estados Unidos
Fil: Perz, Bartosz. Wrocław University of Science and Technology; Polonia
Fil: Behnke, Maciej. Adam Mickiewicz University; Polonia
Fil: Eichstaedt, Johannes C.. University of Stanford; Estados Unidos
Fil: Kim, Soo Hyung. Harvard Medical School; Estados Unidos
Fil: Vu, Tu N.. Chonnam National University; Corea del Sur
Fil: Raman, Chirag. Delft University of Technology; Países Bajos
Fil: Tejada, Julian. Universidade Federal de Sergipe; Brasil
Fil: Huynh, Van Thong. FPT University; Vietnam
Fil: Zhang, Guangyi. Harvard Medical School; Estados Unidos
Fil: Cui, Tanming. No especifíca;
Fil: Podder, Sharanyak. Indian Institute of Science Education and Research Bhopal; India
Fil: Chavda, Rushi. Indian Institute of Technology Bombay; India
Fil: Pandey, Shubham. Indian Institute of Technology Bombay; India
Fil: Upadhyay, Arpit. Indian Institute of Technology Bombay; India
Fil: Padilla Buritica, Jorge I.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Barrera Causil, Carlos J.. Instituto Tecnológico Metropolitano.; Colombia
Fil: Ji, Linying. Montana State University; Estados Unidos
Fil: Dollack, Felix. Nara Institute of Science and Technology; Japón
Fil: Kiyokawa, Kiyoshi. Nara Institute of Science and Technology; Japón
Fil: Liu, Huakun. Nara Institute of Science and Technology; Japón
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Bruno, Nicolás Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: D Amelio, Tomás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Hinduja, Saurabh. University of South Florida; Estados Unidos
Fil: Marmolejo Ramos, Fernando. Flinders University.; Australia
Fil: Canavan, Shaun. University of South Florida; Estados Unidos
Fil: Jivnani, Liza. University of South Florida; Estados Unidos
Fil: Saganowski, Stanisław. Wrocław University of Science and Technology; Polonia
description Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275082
Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-13
2054-5703
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275082
identifier_str_mv Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-13
2054-5703
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.241778
info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.241778
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850504984906432512
score 13.275514