Comparative Corrosion behaviour of different Sn-based solder alloys
- Autores
- Farina, Silvia Beatriz; Morando, Carina Noemi
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- SnPb solders, particularly Sn-37 %Pb eutectic alloy, have been widely used as low temperature joining alloys for some time. However, the restriction of Pb use in industry has been strongly promoted to protect the environment and establishing a Pb-free solder has become a critical issue and an important task for material engineers. New solders must fulfil several requirements; in particular they must be corrosion resistant. In the present work, the corrosion behaviour of five Pb-free solders was studied in a 0.1 M NaCl aqueous solution by means of polarization measurements (corrosion potential measurements, potentiodynamic polarization curves and linear polarization resistance tests), and compare to that of a conventional Sn-37 %Pb solder alloy and pure Sn. The results show that the Sn-3.5 %Ag-0.9 %Cu, Sn-3.5 %Ag and Sn-0.7 %Cu solders have the best resistance to localized as well as to general corrosion, similar to that obtained for the Sn-37 %Pb solder and pure Sn. The Sn-57 %Bi solder has poorer corrosion properties but its behaviour is still acceptable, because it passivates and shows a relatively low corrosion rate. In all these cases the corrosion resistance is good due to the content of noble elements (Ag, Cu, Pb and Bi) in the alloys. On the other hand, the Sn-9 %Zn is definitely the one that exhibits the worst behaviour, not only to localize but also to general corrosion, due to the addition of a less noble material to the Sn matrix.
Fil: Farina, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear. Unidad de Actividad de Materiales (cac); Argentina
Fil: Morando, Carina Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
Corrosion Properties
Sn Based Solder Alloys
Eutectic Alloys
Lead Free Solders - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4595
Ver los metadatos del registro completo
id |
CONICETDig_f2807217fc846f3c5f829a48066e058e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4595 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparative Corrosion behaviour of different Sn-based solder alloysFarina, Silvia BeatrizMorando, Carina NoemiCorrosion PropertiesSn Based Solder AlloysEutectic AlloysLead Free Soldershttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1SnPb solders, particularly Sn-37 %Pb eutectic alloy, have been widely used as low temperature joining alloys for some time. However, the restriction of Pb use in industry has been strongly promoted to protect the environment and establishing a Pb-free solder has become a critical issue and an important task for material engineers. New solders must fulfil several requirements; in particular they must be corrosion resistant. In the present work, the corrosion behaviour of five Pb-free solders was studied in a 0.1 M NaCl aqueous solution by means of polarization measurements (corrosion potential measurements, potentiodynamic polarization curves and linear polarization resistance tests), and compare to that of a conventional Sn-37 %Pb solder alloy and pure Sn. The results show that the Sn-3.5 %Ag-0.9 %Cu, Sn-3.5 %Ag and Sn-0.7 %Cu solders have the best resistance to localized as well as to general corrosion, similar to that obtained for the Sn-37 %Pb solder and pure Sn. The Sn-57 %Bi solder has poorer corrosion properties but its behaviour is still acceptable, because it passivates and shows a relatively low corrosion rate. In all these cases the corrosion resistance is good due to the content of noble elements (Ag, Cu, Pb and Bi) in the alloys. On the other hand, the Sn-9 %Zn is definitely the one that exhibits the worst behaviour, not only to localize but also to general corrosion, due to the addition of a less noble material to the Sn matrix.Fil: Farina, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear. Unidad de Actividad de Materiales (cac); ArgentinaFil: Morando, Carina Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaSpringer2014-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4595Farina, Silvia Beatriz; Morando, Carina Noemi; Comparative Corrosion behaviour of different Sn-based solder alloys; Springer; Journal of Materials Science: Materials in Electronics; 26; 1; 24-10-2014; 464-4710957-4522enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10854-014-2422-0info:eu-repo/semantics/altIdentifier/issn/0957-4522info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10854-014-2422-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:12Zoai:ri.conicet.gov.ar:11336/4595instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:12.68CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparative Corrosion behaviour of different Sn-based solder alloys |
title |
Comparative Corrosion behaviour of different Sn-based solder alloys |
spellingShingle |
Comparative Corrosion behaviour of different Sn-based solder alloys Farina, Silvia Beatriz Corrosion Properties Sn Based Solder Alloys Eutectic Alloys Lead Free Solders |
title_short |
Comparative Corrosion behaviour of different Sn-based solder alloys |
title_full |
Comparative Corrosion behaviour of different Sn-based solder alloys |
title_fullStr |
Comparative Corrosion behaviour of different Sn-based solder alloys |
title_full_unstemmed |
Comparative Corrosion behaviour of different Sn-based solder alloys |
title_sort |
Comparative Corrosion behaviour of different Sn-based solder alloys |
dc.creator.none.fl_str_mv |
Farina, Silvia Beatriz Morando, Carina Noemi |
author |
Farina, Silvia Beatriz |
author_facet |
Farina, Silvia Beatriz Morando, Carina Noemi |
author_role |
author |
author2 |
Morando, Carina Noemi |
author2_role |
author |
dc.subject.none.fl_str_mv |
Corrosion Properties Sn Based Solder Alloys Eutectic Alloys Lead Free Solders |
topic |
Corrosion Properties Sn Based Solder Alloys Eutectic Alloys Lead Free Solders |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
SnPb solders, particularly Sn-37 %Pb eutectic alloy, have been widely used as low temperature joining alloys for some time. However, the restriction of Pb use in industry has been strongly promoted to protect the environment and establishing a Pb-free solder has become a critical issue and an important task for material engineers. New solders must fulfil several requirements; in particular they must be corrosion resistant. In the present work, the corrosion behaviour of five Pb-free solders was studied in a 0.1 M NaCl aqueous solution by means of polarization measurements (corrosion potential measurements, potentiodynamic polarization curves and linear polarization resistance tests), and compare to that of a conventional Sn-37 %Pb solder alloy and pure Sn. The results show that the Sn-3.5 %Ag-0.9 %Cu, Sn-3.5 %Ag and Sn-0.7 %Cu solders have the best resistance to localized as well as to general corrosion, similar to that obtained for the Sn-37 %Pb solder and pure Sn. The Sn-57 %Bi solder has poorer corrosion properties but its behaviour is still acceptable, because it passivates and shows a relatively low corrosion rate. In all these cases the corrosion resistance is good due to the content of noble elements (Ag, Cu, Pb and Bi) in the alloys. On the other hand, the Sn-9 %Zn is definitely the one that exhibits the worst behaviour, not only to localize but also to general corrosion, due to the addition of a less noble material to the Sn matrix. Fil: Farina, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear. Unidad de Actividad de Materiales (cac); Argentina Fil: Morando, Carina Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina |
description |
SnPb solders, particularly Sn-37 %Pb eutectic alloy, have been widely used as low temperature joining alloys for some time. However, the restriction of Pb use in industry has been strongly promoted to protect the environment and establishing a Pb-free solder has become a critical issue and an important task for material engineers. New solders must fulfil several requirements; in particular they must be corrosion resistant. In the present work, the corrosion behaviour of five Pb-free solders was studied in a 0.1 M NaCl aqueous solution by means of polarization measurements (corrosion potential measurements, potentiodynamic polarization curves and linear polarization resistance tests), and compare to that of a conventional Sn-37 %Pb solder alloy and pure Sn. The results show that the Sn-3.5 %Ag-0.9 %Cu, Sn-3.5 %Ag and Sn-0.7 %Cu solders have the best resistance to localized as well as to general corrosion, similar to that obtained for the Sn-37 %Pb solder and pure Sn. The Sn-57 %Bi solder has poorer corrosion properties but its behaviour is still acceptable, because it passivates and shows a relatively low corrosion rate. In all these cases the corrosion resistance is good due to the content of noble elements (Ag, Cu, Pb and Bi) in the alloys. On the other hand, the Sn-9 %Zn is definitely the one that exhibits the worst behaviour, not only to localize but also to general corrosion, due to the addition of a less noble material to the Sn matrix. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4595 Farina, Silvia Beatriz; Morando, Carina Noemi; Comparative Corrosion behaviour of different Sn-based solder alloys; Springer; Journal of Materials Science: Materials in Electronics; 26; 1; 24-10-2014; 464-471 0957-4522 |
url |
http://hdl.handle.net/11336/4595 |
identifier_str_mv |
Farina, Silvia Beatriz; Morando, Carina Noemi; Comparative Corrosion behaviour of different Sn-based solder alloys; Springer; Journal of Materials Science: Materials in Electronics; 26; 1; 24-10-2014; 464-471 0957-4522 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10854-014-2422-0 info:eu-repo/semantics/altIdentifier/issn/0957-4522 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10854-014-2422-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269448092778496 |
score |
13.13397 |