Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems
- Autores
- Vallarella, Alexis Javier; Haimovich, Hernan
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Discrete-time models of non-uniformly sampled nonlinear systems under zero-order hold relate the next state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear system at the sampling instants may be difficult or even impossible to obtain. In this context, one approach to the analysis of stability is based on the use of an approximate discrete-time model and a bound on the mismatch between the exact and approximate models. This approach requires three conceptually different tasks: (i) ensure the stability of the (approximate) discrete-time model, (ii) ensure that the stability of the approximate model carries over to the exact model, (iii) if necessary, bound intersample behaviour. Existing conditions for ensuring the stability of a discrete-time model as per task (i) have some or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for, two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances, and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform.
Fil: Vallarella, Alexis Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
DISCRETE-TIME MODELS
INPUT-TO-STATE STABILITY (ISS)
NON-UNIFORM SAMPLING
NONLINEAR SYSTEMS
SAMPLED-DATA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87977
Ver los metadatos del registro completo
id |
CONICETDig_f1c6113e0ae8e24e69f9d4755b3e4589 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87977 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systemsVallarella, Alexis JavierHaimovich, HernanDISCRETE-TIME MODELSINPUT-TO-STATE STABILITY (ISS)NON-UNIFORM SAMPLINGNONLINEAR SYSTEMSSAMPLED-DATAhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Discrete-time models of non-uniformly sampled nonlinear systems under zero-order hold relate the next state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear system at the sampling instants may be difficult or even impossible to obtain. In this context, one approach to the analysis of stability is based on the use of an approximate discrete-time model and a bound on the mismatch between the exact and approximate models. This approach requires three conceptually different tasks: (i) ensure the stability of the (approximate) discrete-time model, (ii) ensure that the stability of the approximate model carries over to the exact model, (iii) if necessary, bound intersample behaviour. Existing conditions for ensuring the stability of a discrete-time model as per task (i) have some or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for, two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances, and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform.Fil: Vallarella, Alexis Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaElsevier Science2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87977Vallarella, Alexis Javier; Haimovich, Hernan; Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems; Elsevier Science; Systems And Control Letters; 122; 12-2018; 60-660167-6911CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sysconle.2018.10.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167691118301798info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:27Zoai:ri.conicet.gov.ar:11336/87977instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:27.884CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
title |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
spellingShingle |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems Vallarella, Alexis Javier DISCRETE-TIME MODELS INPUT-TO-STATE STABILITY (ISS) NON-UNIFORM SAMPLING NONLINEAR SYSTEMS SAMPLED-DATA |
title_short |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
title_full |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
title_fullStr |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
title_full_unstemmed |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
title_sort |
Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems |
dc.creator.none.fl_str_mv |
Vallarella, Alexis Javier Haimovich, Hernan |
author |
Vallarella, Alexis Javier |
author_facet |
Vallarella, Alexis Javier Haimovich, Hernan |
author_role |
author |
author2 |
Haimovich, Hernan |
author2_role |
author |
dc.subject.none.fl_str_mv |
DISCRETE-TIME MODELS INPUT-TO-STATE STABILITY (ISS) NON-UNIFORM SAMPLING NONLINEAR SYSTEMS SAMPLED-DATA |
topic |
DISCRETE-TIME MODELS INPUT-TO-STATE STABILITY (ISS) NON-UNIFORM SAMPLING NONLINEAR SYSTEMS SAMPLED-DATA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Discrete-time models of non-uniformly sampled nonlinear systems under zero-order hold relate the next state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear system at the sampling instants may be difficult or even impossible to obtain. In this context, one approach to the analysis of stability is based on the use of an approximate discrete-time model and a bound on the mismatch between the exact and approximate models. This approach requires three conceptually different tasks: (i) ensure the stability of the (approximate) discrete-time model, (ii) ensure that the stability of the approximate model carries over to the exact model, (iii) if necessary, bound intersample behaviour. Existing conditions for ensuring the stability of a discrete-time model as per task (i) have some or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for, two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances, and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform. Fil: Vallarella, Alexis Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
Discrete-time models of non-uniformly sampled nonlinear systems under zero-order hold relate the next state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear system at the sampling instants may be difficult or even impossible to obtain. In this context, one approach to the analysis of stability is based on the use of an approximate discrete-time model and a bound on the mismatch between the exact and approximate models. This approach requires three conceptually different tasks: (i) ensure the stability of the (approximate) discrete-time model, (ii) ensure that the stability of the approximate model carries over to the exact model, (iii) if necessary, bound intersample behaviour. Existing conditions for ensuring the stability of a discrete-time model as per task (i) have some or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for, two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances, and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87977 Vallarella, Alexis Javier; Haimovich, Hernan; Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems; Elsevier Science; Systems And Control Letters; 122; 12-2018; 60-66 0167-6911 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87977 |
identifier_str_mv |
Vallarella, Alexis Javier; Haimovich, Hernan; Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems; Elsevier Science; Systems And Control Letters; 122; 12-2018; 60-66 0167-6911 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sysconle.2018.10.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167691118301798 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613337657114624 |
score |
13.070432 |