Low-dimensional representations of the three component loop braid group

Autores
Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; Sun, Michael Yuan
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.
Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados Unidos
Fil: Chang, Liang. Texas A&M University; Estados Unidos
Fil: Hong, Seung-Moon. University of Toledo; Estados Unidos
Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados Unidos
Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos
Fil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; Alemania
Materia
REPRESENTATIONS
LOOP BRAID GROUP
BRAID GROUP
STANDARD EXTENSION
LOW DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51849

id CONICETDig_f1b9b811e9510eb868b1a5d21d4ead0f
oai_identifier_str oai:ri.conicet.gov.ar:11336/51849
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Low-dimensional representations of the three component loop braid groupBruillard, PaulChang, LiangHong, Seung-MoonPlavnik, Julia YaelRowell, Eric C.Sun, Michael YuanREPRESENTATIONSLOOP BRAID GROUPBRAID GROUPSTANDARD EXTENSIONLOW DIMENSIONALIRREDUCIBLE REPRESENTATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados UnidosFil: Chang, Liang. Texas A&M University; Estados UnidosFil: Hong, Seung-Moon. University of Toledo; Estados UnidosFil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados UnidosFil: Rowell, Eric C.. Texas A&M University; Estados UnidosFil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; AlemaniaAmerican Institute of Physics2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51849Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-150022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935361info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4935361info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:36Zoai:ri.conicet.gov.ar:11336/51849instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:36.632CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Low-dimensional representations of the three component loop braid group
title Low-dimensional representations of the three component loop braid group
spellingShingle Low-dimensional representations of the three component loop braid group
Bruillard, Paul
REPRESENTATIONS
LOOP BRAID GROUP
BRAID GROUP
STANDARD EXTENSION
LOW DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS
title_short Low-dimensional representations of the three component loop braid group
title_full Low-dimensional representations of the three component loop braid group
title_fullStr Low-dimensional representations of the three component loop braid group
title_full_unstemmed Low-dimensional representations of the three component loop braid group
title_sort Low-dimensional representations of the three component loop braid group
dc.creator.none.fl_str_mv Bruillard, Paul
Chang, Liang
Hong, Seung-Moon
Plavnik, Julia Yael
Rowell, Eric C.
Sun, Michael Yuan
author Bruillard, Paul
author_facet Bruillard, Paul
Chang, Liang
Hong, Seung-Moon
Plavnik, Julia Yael
Rowell, Eric C.
Sun, Michael Yuan
author_role author
author2 Chang, Liang
Hong, Seung-Moon
Plavnik, Julia Yael
Rowell, Eric C.
Sun, Michael Yuan
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv REPRESENTATIONS
LOOP BRAID GROUP
BRAID GROUP
STANDARD EXTENSION
LOW DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS
topic REPRESENTATIONS
LOOP BRAID GROUP
BRAID GROUP
STANDARD EXTENSION
LOW DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.
Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados Unidos
Fil: Chang, Liang. Texas A&M University; Estados Unidos
Fil: Hong, Seung-Moon. University of Toledo; Estados Unidos
Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados Unidos
Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos
Fil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; Alemania
description Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51849
Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-15
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51849
identifier_str_mv Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-15
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935361
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4935361
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613559015702528
score 13.070432