Low-dimensional representations of the three component loop braid group
- Autores
- Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; Sun, Michael Yuan
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.
Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados Unidos
Fil: Chang, Liang. Texas A&M University; Estados Unidos
Fil: Hong, Seung-Moon. University of Toledo; Estados Unidos
Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados Unidos
Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos
Fil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; Alemania - Materia
-
REPRESENTATIONS
LOOP BRAID GROUP
BRAID GROUP
STANDARD EXTENSION
LOW DIMENSIONAL
IRREDUCIBLE REPRESENTATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51849
Ver los metadatos del registro completo
id |
CONICETDig_f1b9b811e9510eb868b1a5d21d4ead0f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51849 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Low-dimensional representations of the three component loop braid groupBruillard, PaulChang, LiangHong, Seung-MoonPlavnik, Julia YaelRowell, Eric C.Sun, Michael YuanREPRESENTATIONSLOOP BRAID GROUPBRAID GROUPSTANDARD EXTENSIONLOW DIMENSIONALIRREDUCIBLE REPRESENTATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image.Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados UnidosFil: Chang, Liang. Texas A&M University; Estados UnidosFil: Hong, Seung-Moon. University of Toledo; Estados UnidosFil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados UnidosFil: Rowell, Eric C.. Texas A&M University; Estados UnidosFil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; AlemaniaAmerican Institute of Physics2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51849Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-150022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935361info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4935361info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:36Zoai:ri.conicet.gov.ar:11336/51849instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:36.632CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Low-dimensional representations of the three component loop braid group |
title |
Low-dimensional representations of the three component loop braid group |
spellingShingle |
Low-dimensional representations of the three component loop braid group Bruillard, Paul REPRESENTATIONS LOOP BRAID GROUP BRAID GROUP STANDARD EXTENSION LOW DIMENSIONAL IRREDUCIBLE REPRESENTATIONS |
title_short |
Low-dimensional representations of the three component loop braid group |
title_full |
Low-dimensional representations of the three component loop braid group |
title_fullStr |
Low-dimensional representations of the three component loop braid group |
title_full_unstemmed |
Low-dimensional representations of the three component loop braid group |
title_sort |
Low-dimensional representations of the three component loop braid group |
dc.creator.none.fl_str_mv |
Bruillard, Paul Chang, Liang Hong, Seung-Moon Plavnik, Julia Yael Rowell, Eric C. Sun, Michael Yuan |
author |
Bruillard, Paul |
author_facet |
Bruillard, Paul Chang, Liang Hong, Seung-Moon Plavnik, Julia Yael Rowell, Eric C. Sun, Michael Yuan |
author_role |
author |
author2 |
Chang, Liang Hong, Seung-Moon Plavnik, Julia Yael Rowell, Eric C. Sun, Michael Yuan |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
REPRESENTATIONS LOOP BRAID GROUP BRAID GROUP STANDARD EXTENSION LOW DIMENSIONAL IRREDUCIBLE REPRESENTATIONS |
topic |
REPRESENTATIONS LOOP BRAID GROUP BRAID GROUP STANDARD EXTENSION LOW DIMENSIONAL IRREDUCIBLE REPRESENTATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image. Fil: Bruillard, Paul. Pacific Northwest National Laboratory; Estados Unidos Fil: Chang, Liang. Texas A&M University; Estados Unidos Fil: Hong, Seung-Moon. University of Toledo; Estados Unidos Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Texas A&M University; Estados Unidos Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos Fil: Sun, Michael Yuan. Mathematisches Institut der Universität Münster; Alemania |
description |
Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R3. Our point of view is to regard the three strand braid group B3 as a subgroup of LB3 and study the problem of extending B3 representations. We introduce the notion of a standard extension and characterize B3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B3 representations, and (3) irreducible LB3 representations whose restriction to B3 has abelian image. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51849 Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-15 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51849 |
identifier_str_mv |
Bruillard, Paul; Chang, Liang; Hong, Seung-Moon; Plavnik, Julia Yael; Rowell, Eric C.; et al.; Low-dimensional representations of the three component loop braid group; American Institute of Physics; Journal of Mathematical Physics; 56; 11-2015; 111707-1-111707-15 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935361 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4935361 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613559015702528 |
score |
13.070432 |