Fractional statistical potential in graphene

Autores
Ardenghi, Juan Sebastian
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work the fractional statistics is applied to an anyon gas in graphene to obtain the special features that the arbitrary phase interchange of the particle coordinates introduce in the thermodynamic properties. The electron gas is constituted by N anyons in the long wavelength approximation obeying fractional exclusion statistics and the partition function is analyzed in terms of a perturbation expansion up to first order in the dimensionless constant λ/L being L the length of the graphene sheet and λ=βℏvF the thermal wavelength. By considering the correct permutation expansion of the many-anyons wavefunction, taking into account that the phase changes with the number of inversions in each permutation, the statistical fermionic/bosonic potential is obtained and the intermediate statistical behavior is found. It is shown that “extra” fermonic and bosonic particles states appears and this “statistical particle” distribution depends on N. Entropy and specific heat is obtained up to first order in λ/L showing that the results obtained differs from those obtained in different approximation to the fractional exclusion statistics.
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Materia
Braid Group
Graphene
Many-Anyon Wavefunctions
Statistical Potential
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/62622

id CONICETDig_36e0fdce1a01e8d48cf8c53179fbc9f9
oai_identifier_str oai:ri.conicet.gov.ar:11336/62622
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fractional statistical potential in grapheneArdenghi, Juan SebastianBraid GroupGrapheneMany-Anyon WavefunctionsStatistical Potentialhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work the fractional statistics is applied to an anyon gas in graphene to obtain the special features that the arbitrary phase interchange of the particle coordinates introduce in the thermodynamic properties. The electron gas is constituted by N anyons in the long wavelength approximation obeying fractional exclusion statistics and the partition function is analyzed in terms of a perturbation expansion up to first order in the dimensionless constant λ/L being L the length of the graphene sheet and λ=βℏvF the thermal wavelength. By considering the correct permutation expansion of the many-anyons wavefunction, taking into account that the phase changes with the number of inversions in each permutation, the statistical fermionic/bosonic potential is obtained and the intermediate statistical behavior is found. It is shown that “extra” fermonic and bosonic particles states appears and this “statistical particle” distribution depends on N. Entropy and specific heat is obtained up to first order in λ/L showing that the results obtained differs from those obtained in different approximation to the fractional exclusion statistics.Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaElsevier Science2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62622Ardenghi, Juan Sebastian; Fractional statistical potential in graphene; Elsevier Science; Physica B: Condensed Matter; 508; 3-2017; 51-550921-4526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2016.12.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921452616305853info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:12Zoai:ri.conicet.gov.ar:11336/62622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:12.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fractional statistical potential in graphene
title Fractional statistical potential in graphene
spellingShingle Fractional statistical potential in graphene
Ardenghi, Juan Sebastian
Braid Group
Graphene
Many-Anyon Wavefunctions
Statistical Potential
title_short Fractional statistical potential in graphene
title_full Fractional statistical potential in graphene
title_fullStr Fractional statistical potential in graphene
title_full_unstemmed Fractional statistical potential in graphene
title_sort Fractional statistical potential in graphene
dc.creator.none.fl_str_mv Ardenghi, Juan Sebastian
author Ardenghi, Juan Sebastian
author_facet Ardenghi, Juan Sebastian
author_role author
dc.subject.none.fl_str_mv Braid Group
Graphene
Many-Anyon Wavefunctions
Statistical Potential
topic Braid Group
Graphene
Many-Anyon Wavefunctions
Statistical Potential
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work the fractional statistics is applied to an anyon gas in graphene to obtain the special features that the arbitrary phase interchange of the particle coordinates introduce in the thermodynamic properties. The electron gas is constituted by N anyons in the long wavelength approximation obeying fractional exclusion statistics and the partition function is analyzed in terms of a perturbation expansion up to first order in the dimensionless constant λ/L being L the length of the graphene sheet and λ=βℏvF the thermal wavelength. By considering the correct permutation expansion of the many-anyons wavefunction, taking into account that the phase changes with the number of inversions in each permutation, the statistical fermionic/bosonic potential is obtained and the intermediate statistical behavior is found. It is shown that “extra” fermonic and bosonic particles states appears and this “statistical particle” distribution depends on N. Entropy and specific heat is obtained up to first order in λ/L showing that the results obtained differs from those obtained in different approximation to the fractional exclusion statistics.
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
description In this work the fractional statistics is applied to an anyon gas in graphene to obtain the special features that the arbitrary phase interchange of the particle coordinates introduce in the thermodynamic properties. The electron gas is constituted by N anyons in the long wavelength approximation obeying fractional exclusion statistics and the partition function is analyzed in terms of a perturbation expansion up to first order in the dimensionless constant λ/L being L the length of the graphene sheet and λ=βℏvF the thermal wavelength. By considering the correct permutation expansion of the many-anyons wavefunction, taking into account that the phase changes with the number of inversions in each permutation, the statistical fermionic/bosonic potential is obtained and the intermediate statistical behavior is found. It is shown that “extra” fermonic and bosonic particles states appears and this “statistical particle” distribution depends on N. Entropy and specific heat is obtained up to first order in λ/L showing that the results obtained differs from those obtained in different approximation to the fractional exclusion statistics.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/62622
Ardenghi, Juan Sebastian; Fractional statistical potential in graphene; Elsevier Science; Physica B: Condensed Matter; 508; 3-2017; 51-55
0921-4526
CONICET Digital
CONICET
url http://hdl.handle.net/11336/62622
identifier_str_mv Ardenghi, Juan Sebastian; Fractional statistical potential in graphene; Elsevier Science; Physica B: Condensed Matter; 508; 3-2017; 51-55
0921-4526
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2016.12.017
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921452616305853
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269994159702016
score 13.13397