Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
- Autores
- Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia
Fil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina - Materia
-
ARGENTINA
BIOCLIMATE
FOURIER ANALYSIS
MULTILINEAR REGRESSION
NDVI
PHENOLOGY
TIME SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92890
Ver los metadatos del registro completo
id |
CONICETDig_f17ed55c23a93e800347c11953ffc587 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92890 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western ArgentinaGonzalez Loyarte, Maria MargaritaMenenti, MassimoDiblasi, Angela MagdalenaARGENTINABIOCLIMATEFOURIER ANALYSISMULTILINEAR REGRESSIONNDVIPHENOLOGYTIME SERIEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; ItaliaFil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaJohn Wiley & Sons Ltd2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92890Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-11880899-8418CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/joc.1610info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1610info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:20Zoai:ri.conicet.gov.ar:11336/92890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:20.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
title |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
spellingShingle |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina Gonzalez Loyarte, Maria Margarita ARGENTINA BIOCLIMATE FOURIER ANALYSIS MULTILINEAR REGRESSION NDVI PHENOLOGY TIME SERIES |
title_short |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
title_full |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
title_fullStr |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
title_full_unstemmed |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
title_sort |
Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina |
dc.creator.none.fl_str_mv |
Gonzalez Loyarte, Maria Margarita Menenti, Massimo Diblasi, Angela Magdalena |
author |
Gonzalez Loyarte, Maria Margarita |
author_facet |
Gonzalez Loyarte, Maria Margarita Menenti, Massimo Diblasi, Angela Magdalena |
author_role |
author |
author2 |
Menenti, Massimo Diblasi, Angela Magdalena |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARGENTINA BIOCLIMATE FOURIER ANALYSIS MULTILINEAR REGRESSION NDVI PHENOLOGY TIME SERIES |
topic |
ARGENTINA BIOCLIMATE FOURIER ANALYSIS MULTILINEAR REGRESSION NDVI PHENOLOGY TIME SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse. Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina Fil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia Fil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina |
description |
This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92890 Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-1188 0899-8418 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92890 |
identifier_str_mv |
Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-1188 0899-8418 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/joc.1610 info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1610 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083532161548288 |
score |
13.22299 |