Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina

Autores
Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia
Fil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
ARGENTINA
BIOCLIMATE
FOURIER ANALYSIS
MULTILINEAR REGRESSION
NDVI
PHENOLOGY
TIME SERIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92890

id CONICETDig_f17ed55c23a93e800347c11953ffc587
oai_identifier_str oai:ri.conicet.gov.ar:11336/92890
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western ArgentinaGonzalez Loyarte, Maria MargaritaMenenti, MassimoDiblasi, Angela MagdalenaARGENTINABIOCLIMATEFOURIER ANALYSISMULTILINEAR REGRESSIONNDVIPHENOLOGYTIME SERIEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; ItaliaFil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaJohn Wiley & Sons Ltd2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92890Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-11880899-8418CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/joc.1610info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1610info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:20Zoai:ri.conicet.gov.ar:11336/92890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:20.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
title Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
spellingShingle Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
Gonzalez Loyarte, Maria Margarita
ARGENTINA
BIOCLIMATE
FOURIER ANALYSIS
MULTILINEAR REGRESSION
NDVI
PHENOLOGY
TIME SERIES
title_short Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
title_full Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
title_fullStr Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
title_full_unstemmed Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
title_sort Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina
dc.creator.none.fl_str_mv Gonzalez Loyarte, Maria Margarita
Menenti, Massimo
Diblasi, Angela Magdalena
author Gonzalez Loyarte, Maria Margarita
author_facet Gonzalez Loyarte, Maria Margarita
Menenti, Massimo
Diblasi, Angela Magdalena
author_role author
author2 Menenti, Massimo
Diblasi, Angela Magdalena
author2_role author
author
dc.subject.none.fl_str_mv ARGENTINA
BIOCLIMATE
FOURIER ANALYSIS
MULTILINEAR REGRESSION
NDVI
PHENOLOGY
TIME SERIES
topic ARGENTINA
BIOCLIMATE
FOURIER ANALYSIS
MULTILINEAR REGRESSION
NDVI
PHENOLOGY
TIME SERIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, Massimo. Université de Strasbourg; Francia. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia
Fil: Diblasi, Angela Magdalena. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description This study assessed whether the relationship of climate with foliar phenology is sufficiently robust to use a measure of foliar phenology to interpolate climate statistics in areas where observations are sparse. The normalized difference vegetation index (NDVI) was used to represent vegetation activity. As a measure of foliar phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier Transform (FFT) applied to a 9-year time series of monthly National Oceanographic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) NDVI global area coverage (GAC) images. The FFT decomposes the series into an average signal and to sinusoidal components. The selected FFT parameters were mean NDVI, and amplitude and phase for a 1-year period. Our specific objective was to relate the ratio of precipitation, P, over potential evapotranspiration, ETP, to the FFT parameters in two complementary ways. The first was to use them as attributes in a numerical classification to obtain a map of foliar isophenology, and then associate these classes with bioclimatic types, thus generating a bioclimatic map. The second was to fit a multiple linear regression model with P/ETP as predicted variable and the FFT parameters as predictive variables. The regression model was then applied to obtain a map of the ratio P/ETP. The latter gave a second bioclimatic map. Foliar isophenology classes show a north-south decrease in phase value and increase in amplitude and mean NDVI values, thus reflecting the transition in climate conditions from hotter and drier to wetter and cooler. The model explains 92% (p-value <10-12) of the spatial variation in the P/ETP ratio. When using a single FFT parameter, no significant relationship was obtained. The three parameters provide complementary information to understand phenological variability in response to climate variability. Modelling bioclimate by means of monthly NDVI series summarized by Fourier analysis is an adequate tool to extend climate data where they are sparse.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92890
Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-1188
0899-8418
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92890
identifier_str_mv Gonzalez Loyarte, Maria Margarita; Menenti, Massimo; Diblasi, Angela Magdalena; Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina; John Wiley & Sons Ltd; International Journal of Climatology; 28; 9; 12-2008; 1175-1188
0899-8418
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/joc.1610
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1610
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083532161548288
score 13.22299