Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
- Autores
- Gonzalez Loyarte, Maria Margarita; Menenti, M.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia - Materia
-
RAINFALL ANOMALIES
FOURIER PARAMETERS
TIME SERIES
NOAA-AVHRR/NDVI - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92896
Ver los metadatos del registro completo
id |
CONICETDig_627a3803583443df8a549e98a8d7228e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92896 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern ArgentinaGonzalez Loyarte, Maria MargaritaMenenti, M.RAINFALL ANOMALIESFOURIER PARAMETERSTIME SERIESNOAA-AVHRR/NDVIhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; ItaliaTaylor & Francis Ltd2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92896Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-11520143-1161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01431160701355223info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160701355223info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:41Zoai:ri.conicet.gov.ar:11336/92896instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:42.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
title |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
spellingShingle |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina Gonzalez Loyarte, Maria Margarita RAINFALL ANOMALIES FOURIER PARAMETERS TIME SERIES NOAA-AVHRR/NDVI |
title_short |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
title_full |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
title_fullStr |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
title_full_unstemmed |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
title_sort |
Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina |
dc.creator.none.fl_str_mv |
Gonzalez Loyarte, Maria Margarita Menenti, M. |
author |
Gonzalez Loyarte, Maria Margarita |
author_facet |
Gonzalez Loyarte, Maria Margarita Menenti, M. |
author_role |
author |
author2 |
Menenti, M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
RAINFALL ANOMALIES FOURIER PARAMETERS TIME SERIES NOAA-AVHRR/NDVI |
topic |
RAINFALL ANOMALIES FOURIER PARAMETERS TIME SERIES NOAA-AVHRR/NDVI |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year. Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina Fil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia |
description |
This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92896 Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-1152 0143-1161 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92896 |
identifier_str_mv |
Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-1152 0143-1161 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/01431160701355223 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160701355223 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269712160915456 |
score |
13.13397 |