Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina

Autores
Gonzalez Loyarte, Maria Margarita; Menenti, M.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia
Materia
RAINFALL ANOMALIES
FOURIER PARAMETERS
TIME SERIES
NOAA-AVHRR/NDVI
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92896

id CONICETDig_627a3803583443df8a549e98a8d7228e
oai_identifier_str oai:ri.conicet.gov.ar:11336/92896
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern ArgentinaGonzalez Loyarte, Maria MargaritaMenenti, M.RAINFALL ANOMALIESFOURIER PARAMETERSTIME SERIESNOAA-AVHRR/NDVIhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; ItaliaTaylor & Francis Ltd2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92896Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-11520143-1161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01431160701355223info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160701355223info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:41Zoai:ri.conicet.gov.ar:11336/92896instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:42.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
title Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
spellingShingle Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
Gonzalez Loyarte, Maria Margarita
RAINFALL ANOMALIES
FOURIER PARAMETERS
TIME SERIES
NOAA-AVHRR/NDVI
title_short Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
title_full Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
title_fullStr Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
title_full_unstemmed Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
title_sort Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina
dc.creator.none.fl_str_mv Gonzalez Loyarte, Maria Margarita
Menenti, M.
author Gonzalez Loyarte, Maria Margarita
author_facet Gonzalez Loyarte, Maria Margarita
Menenti, M.
author_role author
author2 Menenti, M.
author2_role author
dc.subject.none.fl_str_mv RAINFALL ANOMALIES
FOURIER PARAMETERS
TIME SERIES
NOAA-AVHRR/NDVI
topic RAINFALL ANOMALIES
FOURIER PARAMETERS
TIME SERIES
NOAA-AVHRR/NDVI
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.
Fil: Gonzalez Loyarte, Maria Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Menenti, M.. Istituto per i Sistemi Agricoli e Forestali del Mediterraneo; Italia
description This paper describes a method to detect the impact of rainfall anomalies on vegetation phenology, in terms of timing (phase) and greenness, by using Fourier series to fit a time series of Normalized Difference Vegetation Index (NDVI) observations. The study was conducted in the northern semiarid region of Argentina, where rainfall is the driving factor of vegetation phenology. A 9-year time series of monthly NDVI Global Area Coverage (GAC) images, obtained with the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), was split into nine series of 12-monthly images, each corresponding to a yearly growth cycle. A Fast Fourier Transform (FFT) algorithm was applied to each cycle, and derived parameters were analysed according to rainfall anomalies for irrigated and rainfed crops, grasslands and native forest. Derived Fourier parameters were: mean NDVI, amplitude and phase. Both negative and positive rainfall anomalies had a significant impact on the Fourier parameters. Amplitude and phase were the most sensitive parameters. Droughts modified the monomodal structure of the yearly cycle by decreasing the contribution of the 12-month periodic component and increasing the contribution of the 6-month component. The impact of drought on the Fourier parameters was highest for rainfed crops. Yearly values of Fourier parameters for grasslands and native forest were affected by prevailing hydrological conditions over the previous year.
publishDate 2008
dc.date.none.fl_str_mv 2008-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92896
Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-1152
0143-1161
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92896
identifier_str_mv Gonzalez Loyarte, Maria Margarita; Menenti, M.; Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina; Taylor & Francis Ltd; International Journal of Remote Sensing; 29; 4; 2-2008; 1125-1152
0143-1161
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/01431160701355223
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431160701355223
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269712160915456
score 13.13397