A family of non-parametric density estimation algorithms
- Autores
- Tabak, E. G.; Turner, Cristina Vilma
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new methodology for density estimation is proposed. The method- ology, which builds on the one developed in [15], normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the el- ementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complex- ity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps.
Fil: Tabak, E. G.. University Of New York; Estados Unidos
Fil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
Density Estimation
Clustering
Non Parametric Statistic
Flux Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8930
Ver los metadatos del registro completo
| id |
CONICETDig_f115e48bdfefed8515d3d0c8af93607d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8930 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A family of non-parametric density estimation algorithmsTabak, E. G.Turner, Cristina VilmaDensity EstimationClusteringNon Parametric StatisticFlux Algorithmhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new methodology for density estimation is proposed. The method- ology, which builds on the one developed in [15], normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the el- ementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complex- ity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps.Fil: Tabak, E. G.. University Of New York; Estados UnidosFil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaWiley2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8930Tabak, E. G. ; Turner, Cristina Vilma; A family of non-parametric density estimation algorithms; Wiley; Communications On Pure And Applied Mathematics; 62; 2; 2-2013; 145-1640010-3640enginfo:eu-repo/semantics/altIdentifier/doi/10.1002/cpa.21423info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cpa.21423/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:47:54Zoai:ri.conicet.gov.ar:11336/8930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:47:54.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A family of non-parametric density estimation algorithms |
| title |
A family of non-parametric density estimation algorithms |
| spellingShingle |
A family of non-parametric density estimation algorithms Tabak, E. G. Density Estimation Clustering Non Parametric Statistic Flux Algorithm |
| title_short |
A family of non-parametric density estimation algorithms |
| title_full |
A family of non-parametric density estimation algorithms |
| title_fullStr |
A family of non-parametric density estimation algorithms |
| title_full_unstemmed |
A family of non-parametric density estimation algorithms |
| title_sort |
A family of non-parametric density estimation algorithms |
| dc.creator.none.fl_str_mv |
Tabak, E. G. Turner, Cristina Vilma |
| author |
Tabak, E. G. |
| author_facet |
Tabak, E. G. Turner, Cristina Vilma |
| author_role |
author |
| author2 |
Turner, Cristina Vilma |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Density Estimation Clustering Non Parametric Statistic Flux Algorithm |
| topic |
Density Estimation Clustering Non Parametric Statistic Flux Algorithm |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A new methodology for density estimation is proposed. The method- ology, which builds on the one developed in [15], normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the el- ementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complex- ity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps. Fil: Tabak, E. G.. University Of New York; Estados Unidos Fil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
| description |
A new methodology for density estimation is proposed. The method- ology, which builds on the one developed in [15], normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the el- ementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complex- ity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8930 Tabak, E. G. ; Turner, Cristina Vilma; A family of non-parametric density estimation algorithms; Wiley; Communications On Pure And Applied Mathematics; 62; 2; 2-2013; 145-164 0010-3640 |
| url |
http://hdl.handle.net/11336/8930 |
| identifier_str_mv |
Tabak, E. G. ; Turner, Cristina Vilma; A family of non-parametric density estimation algorithms; Wiley; Communications On Pure And Applied Mathematics; 62; 2; 2-2013; 145-164 0010-3640 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/cpa.21423 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cpa.21423/abstract |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley |
| publisher.none.fl_str_mv |
Wiley |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977151432753152 |
| score |
13.084122 |