Adjustment of model parameters to estimate distribution transformers remaining lifespan
- Autores
- Jimenez, Victor Adrian; Will, Adrian L. E.; Gotay Sardiñas, Jorge; Rodriguez, Sebastian Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.
Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina
Fil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina
Fil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina
Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina - Materia
-
DISTRIBUTION TRANSFORMER
THERMAL MODEL
TRANSFORMER LIFESPAN
PARAMETERS ADJUSTMENT
GENETIC ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81247
Ver los metadatos del registro completo
id |
CONICETDig_ef359cb215812f6fd093a9e14ec8f9f9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81247 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adjustment of model parameters to estimate distribution transformers remaining lifespanJimenez, Victor AdrianWill, Adrian L. E.Gotay Sardiñas, JorgeRodriguez, Sebastian AlbertoDISTRIBUTION TRANSFORMERTHERMAL MODELTRANSFORMER LIFESPANPARAMETERS ADJUSTMENTGENETIC ALGORITHMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaScientific Research Publishing Inc.2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81247Jimenez, Victor Adrian; Will, Adrian L. E.; Gotay Sardiñas, Jorge; Rodriguez, Sebastian Alberto; Adjustment of model parameters to estimate distribution transformers remaining lifespan; Scientific Research Publishing Inc.; Smart Grid and Renewable Energy; 09; 09; 9-2018; 151-1702151-481X2151-4844CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/pdf/SGRE_2018092816092325.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.4236/sgre.2018.99010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:29Zoai:ri.conicet.gov.ar:11336/81247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:30.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
title |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
spellingShingle |
Adjustment of model parameters to estimate distribution transformers remaining lifespan Jimenez, Victor Adrian DISTRIBUTION TRANSFORMER THERMAL MODEL TRANSFORMER LIFESPAN PARAMETERS ADJUSTMENT GENETIC ALGORITHMS |
title_short |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
title_full |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
title_fullStr |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
title_full_unstemmed |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
title_sort |
Adjustment of model parameters to estimate distribution transformers remaining lifespan |
dc.creator.none.fl_str_mv |
Jimenez, Victor Adrian Will, Adrian L. E. Gotay Sardiñas, Jorge Rodriguez, Sebastian Alberto |
author |
Jimenez, Victor Adrian |
author_facet |
Jimenez, Victor Adrian Will, Adrian L. E. Gotay Sardiñas, Jorge Rodriguez, Sebastian Alberto |
author_role |
author |
author2 |
Will, Adrian L. E. Gotay Sardiñas, Jorge Rodriguez, Sebastian Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DISTRIBUTION TRANSFORMER THERMAL MODEL TRANSFORMER LIFESPAN PARAMETERS ADJUSTMENT GENETIC ALGORITHMS |
topic |
DISTRIBUTION TRANSFORMER THERMAL MODEL TRANSFORMER LIFESPAN PARAMETERS ADJUSTMENT GENETIC ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system. Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina Fil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina Fil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina |
description |
Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81247 Jimenez, Victor Adrian; Will, Adrian L. E.; Gotay Sardiñas, Jorge; Rodriguez, Sebastian Alberto; Adjustment of model parameters to estimate distribution transformers remaining lifespan; Scientific Research Publishing Inc.; Smart Grid and Renewable Energy; 09; 09; 9-2018; 151-170 2151-481X 2151-4844 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81247 |
identifier_str_mv |
Jimenez, Victor Adrian; Will, Adrian L. E.; Gotay Sardiñas, Jorge; Rodriguez, Sebastian Alberto; Adjustment of model parameters to estimate distribution transformers remaining lifespan; Scientific Research Publishing Inc.; Smart Grid and Renewable Energy; 09; 09; 9-2018; 151-170 2151-481X 2151-4844 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/pdf/SGRE_2018092816092325.pdf info:eu-repo/semantics/altIdentifier/doi/10.4236/sgre.2018.99010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing Inc. |
publisher.none.fl_str_mv |
Scientific Research Publishing Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980087459217408 |
score |
12.993085 |