Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina
- Autores
- Gutierrez, Javier Armando; Laneri, Karina Fabiana; Aparicio, Juan Pablo; Sibona, Gustavo Javier
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the last two decades dengue cases increased significantly throughout the world, giving place to more frequent outbreaks in Latin America. In the non-endemic city of San Ramón de la Nueva Orán, located in Northwest Argentina, large dengue outbreaks alternate with several years of smaller ones. This pattern, as well as the understanding of the underlying mechanisms, could be essential to design proper strategies to reduce epidemic size. We develop a stochastic model that includes climate variables, social structure, and mobility between a non-endemic city and an endemic area. Climatic variables were input of a mosquito population ecological model, which in turn was coupled to a meta-population, spatially explicit, epidemiological model. Human mobility was included into the model given the high border crossing to the northern country of Bolivia, where dengue transmission is sustained during the whole year. We tested different hypotheses regarding people mobility as well as climate variability by fitting numerical simulations to weekly clinical data reported from 2009 to 2016. After assessing the number of imported cases that triggered the observed outbreaks, our model allows to explain the observed epidemic pattern. We found that the number of vectors per host and the effective reproductive number are proxies for large epidemics. Both proxies are related with climate variability such as rainfall and temperature, opening the possibility to test these meteorological variables for forecast purposes.
Fil: Gutierrez, Javier Armando. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Fil: Sibona, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
DENGUE
MATHEMATICAL MODELLING
MOSQUITOES POPULATION
OUTBREAK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217888
Ver los metadatos del registro completo
id |
CONICETDig_eebed95801bb19bb76ed2946d51259a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217888 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Meteorological indicators of dengue epidemics in non-endemic Northwest ArgentinaGutierrez, Javier ArmandoLaneri, Karina FabianaAparicio, Juan PabloSibona, Gustavo JavierDENGUEMATHEMATICAL MODELLINGMOSQUITOES POPULATIONOUTBREAKhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the last two decades dengue cases increased significantly throughout the world, giving place to more frequent outbreaks in Latin America. In the non-endemic city of San Ramón de la Nueva Orán, located in Northwest Argentina, large dengue outbreaks alternate with several years of smaller ones. This pattern, as well as the understanding of the underlying mechanisms, could be essential to design proper strategies to reduce epidemic size. We develop a stochastic model that includes climate variables, social structure, and mobility between a non-endemic city and an endemic area. Climatic variables were input of a mosquito population ecological model, which in turn was coupled to a meta-population, spatially explicit, epidemiological model. Human mobility was included into the model given the high border crossing to the northern country of Bolivia, where dengue transmission is sustained during the whole year. We tested different hypotheses regarding people mobility as well as climate variability by fitting numerical simulations to weekly clinical data reported from 2009 to 2016. After assessing the number of imported cases that triggered the observed outbreaks, our model allows to explain the observed epidemic pattern. We found that the number of vectors per host and the effective reproductive number are proxies for large epidemics. Both proxies are related with climate variability such as rainfall and temperature, opening the possibility to test these meteorological variables for forecast purposes.Fil: Gutierrez, Javier Armando. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Sibona, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaElsevier2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217888Gutierrez, Javier Armando; Laneri, Karina Fabiana; Aparicio, Juan Pablo; Sibona, Gustavo Javier; Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina; Elsevier; Infectious Disease Modelling; 7; 4; 12-2022; 823-8342468-0427CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468042722000811info:eu-repo/semantics/altIdentifier/doi/10.1016/j.idm.2022.10.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:46Zoai:ri.conicet.gov.ar:11336/217888instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:47.083CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
title |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
spellingShingle |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina Gutierrez, Javier Armando DENGUE MATHEMATICAL MODELLING MOSQUITOES POPULATION OUTBREAK |
title_short |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
title_full |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
title_fullStr |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
title_full_unstemmed |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
title_sort |
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina |
dc.creator.none.fl_str_mv |
Gutierrez, Javier Armando Laneri, Karina Fabiana Aparicio, Juan Pablo Sibona, Gustavo Javier |
author |
Gutierrez, Javier Armando |
author_facet |
Gutierrez, Javier Armando Laneri, Karina Fabiana Aparicio, Juan Pablo Sibona, Gustavo Javier |
author_role |
author |
author2 |
Laneri, Karina Fabiana Aparicio, Juan Pablo Sibona, Gustavo Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DENGUE MATHEMATICAL MODELLING MOSQUITOES POPULATION OUTBREAK |
topic |
DENGUE MATHEMATICAL MODELLING MOSQUITOES POPULATION OUTBREAK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the last two decades dengue cases increased significantly throughout the world, giving place to more frequent outbreaks in Latin America. In the non-endemic city of San Ramón de la Nueva Orán, located in Northwest Argentina, large dengue outbreaks alternate with several years of smaller ones. This pattern, as well as the understanding of the underlying mechanisms, could be essential to design proper strategies to reduce epidemic size. We develop a stochastic model that includes climate variables, social structure, and mobility between a non-endemic city and an endemic area. Climatic variables were input of a mosquito population ecological model, which in turn was coupled to a meta-population, spatially explicit, epidemiological model. Human mobility was included into the model given the high border crossing to the northern country of Bolivia, where dengue transmission is sustained during the whole year. We tested different hypotheses regarding people mobility as well as climate variability by fitting numerical simulations to weekly clinical data reported from 2009 to 2016. After assessing the number of imported cases that triggered the observed outbreaks, our model allows to explain the observed epidemic pattern. We found that the number of vectors per host and the effective reproductive number are proxies for large epidemics. Both proxies are related with climate variability such as rainfall and temperature, opening the possibility to test these meteorological variables for forecast purposes. Fil: Gutierrez, Javier Armando. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina Fil: Sibona, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
In the last two decades dengue cases increased significantly throughout the world, giving place to more frequent outbreaks in Latin America. In the non-endemic city of San Ramón de la Nueva Orán, located in Northwest Argentina, large dengue outbreaks alternate with several years of smaller ones. This pattern, as well as the understanding of the underlying mechanisms, could be essential to design proper strategies to reduce epidemic size. We develop a stochastic model that includes climate variables, social structure, and mobility between a non-endemic city and an endemic area. Climatic variables were input of a mosquito population ecological model, which in turn was coupled to a meta-population, spatially explicit, epidemiological model. Human mobility was included into the model given the high border crossing to the northern country of Bolivia, where dengue transmission is sustained during the whole year. We tested different hypotheses regarding people mobility as well as climate variability by fitting numerical simulations to weekly clinical data reported from 2009 to 2016. After assessing the number of imported cases that triggered the observed outbreaks, our model allows to explain the observed epidemic pattern. We found that the number of vectors per host and the effective reproductive number are proxies for large epidemics. Both proxies are related with climate variability such as rainfall and temperature, opening the possibility to test these meteorological variables for forecast purposes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217888 Gutierrez, Javier Armando; Laneri, Karina Fabiana; Aparicio, Juan Pablo; Sibona, Gustavo Javier; Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina; Elsevier; Infectious Disease Modelling; 7; 4; 12-2022; 823-834 2468-0427 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217888 |
identifier_str_mv |
Gutierrez, Javier Armando; Laneri, Karina Fabiana; Aparicio, Juan Pablo; Sibona, Gustavo Javier; Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina; Elsevier; Infectious Disease Modelling; 7; 4; 12-2022; 823-834 2468-0427 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468042722000811 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.idm.2022.10.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613748487094272 |
score |
13.070432 |