On irreducible infinite conformal algebras

Autores
Boyallian, Carina; Liberati, Jose Ignacio
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The associative conformal algebra CendN and the corresponding general Lie conformal algebra gcN are the most important examples of simple conformal algebras which are not finite (see Sect. 2.10 in [K1]). One of the most important open problems of the theory of conformal algebras is the classification of infinite subalgebras of CendN and of gcN which act irreducibly on C[∂] N . (For a classification of such finite algebras, in the associative case see Theorem 2.6 of the present paper, and in the (more difficult) Lie case see [CK] and [DK].) The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C that acts irreducibly on C N is the whole algebra MatN C. This is certainly not true for subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family of infinite subalgebras CendN,P of CendN , where P(x) ∈ MatN C[x], det P(x) 6= 0, that still act irreducibly on C[∂] N . One of the conjectures of [K2] states that there are no other infinite irreducible subalgebras of CendN . This conjecture was recently proved by Kolesnikov [Ko]. In the Lie conformal case, we have a conjecture on the classification of infinite Lie conformal subalgebras of gcN acting irreducibly on C[∂] N , see Conjecture 4.4. This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V. Kac.
Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
ALGEBRAS
IRREDUCIBLE INFINITE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230890

id CONICETDig_0ddf350c839968ee0876b061f8f13eca
oai_identifier_str oai:ri.conicet.gov.ar:11336/230890
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On irreducible infinite conformal algebrasBoyallian, CarinaLiberati, Jose IgnacioALGEBRASIRREDUCIBLE INFINITEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The associative conformal algebra CendN and the corresponding general Lie conformal algebra gcN are the most important examples of simple conformal algebras which are not finite (see Sect. 2.10 in [K1]). One of the most important open problems of the theory of conformal algebras is the classification of infinite subalgebras of CendN and of gcN which act irreducibly on C[∂] N . (For a classification of such finite algebras, in the associative case see Theorem 2.6 of the present paper, and in the (more difficult) Lie case see [CK] and [DK].) The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C that acts irreducibly on C N is the whole algebra MatN C. This is certainly not true for subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family of infinite subalgebras CendN,P of CendN , where P(x) ∈ MatN C[x], det P(x) 6= 0, that still act irreducibly on C[∂] N . One of the conjectures of [K2] states that there are no other infinite irreducible subalgebras of CendN . This conjecture was recently proved by Kolesnikov [Ko]. In the Lie conformal case, we have a conjecture on the classification of infinite Lie conformal subalgebras of gcN acting irreducibly on C[∂] N , see Conjecture 4.4. This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V. Kac.Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaUniversidade de São Paulo2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230890Boyallian, Carina; Liberati, Jose Ignacio; On irreducible infinite conformal algebras; Universidade de São Paulo; Resenhas Do Instituto de Matematica E Estatistica Da Universidade de Sao Paulo; 6; 12-2004; 129-1400104-3854CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:01Zoai:ri.conicet.gov.ar:11336/230890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:01.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On irreducible infinite conformal algebras
title On irreducible infinite conformal algebras
spellingShingle On irreducible infinite conformal algebras
Boyallian, Carina
ALGEBRAS
IRREDUCIBLE INFINITE
title_short On irreducible infinite conformal algebras
title_full On irreducible infinite conformal algebras
title_fullStr On irreducible infinite conformal algebras
title_full_unstemmed On irreducible infinite conformal algebras
title_sort On irreducible infinite conformal algebras
dc.creator.none.fl_str_mv Boyallian, Carina
Liberati, Jose Ignacio
author Boyallian, Carina
author_facet Boyallian, Carina
Liberati, Jose Ignacio
author_role author
author2 Liberati, Jose Ignacio
author2_role author
dc.subject.none.fl_str_mv ALGEBRAS
IRREDUCIBLE INFINITE
topic ALGEBRAS
IRREDUCIBLE INFINITE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The associative conformal algebra CendN and the corresponding general Lie conformal algebra gcN are the most important examples of simple conformal algebras which are not finite (see Sect. 2.10 in [K1]). One of the most important open problems of the theory of conformal algebras is the classification of infinite subalgebras of CendN and of gcN which act irreducibly on C[∂] N . (For a classification of such finite algebras, in the associative case see Theorem 2.6 of the present paper, and in the (more difficult) Lie case see [CK] and [DK].) The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C that acts irreducibly on C N is the whole algebra MatN C. This is certainly not true for subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family of infinite subalgebras CendN,P of CendN , where P(x) ∈ MatN C[x], det P(x) 6= 0, that still act irreducibly on C[∂] N . One of the conjectures of [K2] states that there are no other infinite irreducible subalgebras of CendN . This conjecture was recently proved by Kolesnikov [Ko]. In the Lie conformal case, we have a conjecture on the classification of infinite Lie conformal subalgebras of gcN acting irreducibly on C[∂] N , see Conjecture 4.4. This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V. Kac.
Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description The associative conformal algebra CendN and the corresponding general Lie conformal algebra gcN are the most important examples of simple conformal algebras which are not finite (see Sect. 2.10 in [K1]). One of the most important open problems of the theory of conformal algebras is the classification of infinite subalgebras of CendN and of gcN which act irreducibly on C[∂] N . (For a classification of such finite algebras, in the associative case see Theorem 2.6 of the present paper, and in the (more difficult) Lie case see [CK] and [DK].) The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C that acts irreducibly on C N is the whole algebra MatN C. This is certainly not true for subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family of infinite subalgebras CendN,P of CendN , where P(x) ∈ MatN C[x], det P(x) 6= 0, that still act irreducibly on C[∂] N . One of the conjectures of [K2] states that there are no other infinite irreducible subalgebras of CendN . This conjecture was recently proved by Kolesnikov [Ko]. In the Lie conformal case, we have a conjecture on the classification of infinite Lie conformal subalgebras of gcN acting irreducibly on C[∂] N , see Conjecture 4.4. This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V. Kac.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230890
Boyallian, Carina; Liberati, Jose Ignacio; On irreducible infinite conformal algebras; Universidade de São Paulo; Resenhas Do Instituto de Matematica E Estatistica Da Universidade de Sao Paulo; 6; 12-2004; 129-140
0104-3854
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230890
identifier_str_mv Boyallian, Carina; Liberati, Jose Ignacio; On irreducible infinite conformal algebras; Universidade de São Paulo; Resenhas Do Instituto de Matematica E Estatistica Da Universidade de Sao Paulo; 6; 12-2004; 129-140
0104-3854
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade de São Paulo
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980930219671552
score 12.993085