The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.

Autores
Rodas, Claudio José Francisco; Pulido, Manuel Arturo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; Argentina
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
Geophysical And Geological Flows
Internal Waves
Waves in Rotating Fluids
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21987

id CONICETDig_ed6f7ec04b031ac8a88e585f32f3cb57
oai_identifier_str oai:ri.conicet.gov.ar:11336/21987
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.Rodas, Claudio José FranciscoPulido, Manuel ArturoGeophysical And Geological FlowsInternal WavesWaves in Rotating Fluidshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaCambridge University Press2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21987Rodas, Claudio José Francisco; Pulido, Manuel Arturo; The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.; Cambridge University Press; Journal of Fluid Mechanics; 759; 11-2014; 676-7000022-1120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/breaking-of-transient-inertiogravity-waves-in-a-shear-flow-using-the-gaussian-beam-approximation/8438FF2E84D88AB98FA8F79E27B11A1Cinfo:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.592info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:44Zoai:ri.conicet.gov.ar:11336/21987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:44.393CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
title The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
spellingShingle The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
Rodas, Claudio José Francisco
Geophysical And Geological Flows
Internal Waves
Waves in Rotating Fluids
title_short The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
title_full The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
title_fullStr The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
title_full_unstemmed The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
title_sort The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.
dc.creator.none.fl_str_mv Rodas, Claudio José Francisco
Pulido, Manuel Arturo
author Rodas, Claudio José Francisco
author_facet Rodas, Claudio José Francisco
Pulido, Manuel Arturo
author_role author
author2 Pulido, Manuel Arturo
author2_role author
dc.subject.none.fl_str_mv Geophysical And Geological Flows
Internal Waves
Waves in Rotating Fluids
topic Geophysical And Geological Flows
Internal Waves
Waves in Rotating Fluids
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Departamento de Física; Argentina
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21987
Rodas, Claudio José Francisco; Pulido, Manuel Arturo; The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.; Cambridge University Press; Journal of Fluid Mechanics; 759; 11-2014; 676-700
0022-1120
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21987
identifier_str_mv Rodas, Claudio José Francisco; Pulido, Manuel Arturo; The breaking of transience inertio-gravity waves in a shear flow using the Gaussian beam approximation.; Cambridge University Press; Journal of Fluid Mechanics; 759; 11-2014; 676-700
0022-1120
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/breaking-of-transient-inertiogravity-waves-in-a-shear-flow-using-the-gaussian-beam-approximation/8438FF2E84D88AB98FA8F79E27B11A1C
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.592
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613431159685120
score 13.070432