A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation
- Autores
- Pulido, Manuel Arturo; Rodas, Claudio José Francisco
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ray techniques are a promising tool for developing orographic gravity wave drag schemes. However, the modeling of the propagation of orographic waves using standard ray theory in realistic background wind conditions usually encounters several regions, called caustics, where the first-order ray approximation breaks down. In this work the authors develop a higher-order approximation than standard ray theory, named the Gaussian beam approximation, for orographic gravity waves in a background wind that depends on height. The analytical results show that this formulation is free of the singularities that arise in ray theory. Orographic gravity waves that propagate in a background wind that turns with height?the same conditions as in the work of Shutts?are examined under the Gaussian beam approximation. The evolution of the amplitude is well defined in this approximation even at caustics and at the forcing level. When comparing results from the Gaussian beam approximation with high-resolution numerical simulations that compute the exact solution, there is good agreement of the amplitude and phase fields. Realistic orography is represented by means of a superposition of multiple Gaussians in wavenumber space that fit the spectrum of the orography. The technique appears to give a good representation of the disturbances generated by flow over realistic orography.
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste; Argentina - Materia
-
GRAVITY WAVES
NUMERICAL ANALYSIS/MODELING
OROGRAPHIC EFFECTS
WIND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148687
Ver los metadatos del registro completo
id |
CONICETDig_22aa2b5f8dfaa5fb508908ba1df51587 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148687 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximationPulido, Manuel ArturoRodas, Claudio José FranciscoGRAVITY WAVESNUMERICAL ANALYSIS/MODELINGOROGRAPHIC EFFECTSWINDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Ray techniques are a promising tool for developing orographic gravity wave drag schemes. However, the modeling of the propagation of orographic waves using standard ray theory in realistic background wind conditions usually encounters several regions, called caustics, where the first-order ray approximation breaks down. In this work the authors develop a higher-order approximation than standard ray theory, named the Gaussian beam approximation, for orographic gravity waves in a background wind that depends on height. The analytical results show that this formulation is free of the singularities that arise in ray theory. Orographic gravity waves that propagate in a background wind that turns with height?the same conditions as in the work of Shutts?are examined under the Gaussian beam approximation. The evolution of the amplitude is well defined in this approximation even at caustics and at the forcing level. When comparing results from the Gaussian beam approximation with high-resolution numerical simulations that compute the exact solution, there is good agreement of the amplitude and phase fields. Realistic orography is represented by means of a superposition of multiple Gaussians in wavenumber space that fit the spectrum of the orography. The technique appears to give a good representation of the disturbances generated by flow over realistic orography.Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste; ArgentinaAmer Meteorological Soc2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148687Pulido, Manuel Arturo; Rodas, Claudio José Francisco; A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation; Amer Meteorological Soc; Journal of The Atmospheric Sciences; 68; 1; 1-2011; 46-600022-4928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/atsc/68/1/2010jas3468.1.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1175/2010JAS3468.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:13Zoai:ri.conicet.gov.ar:11336/148687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:13.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
title |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
spellingShingle |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation Pulido, Manuel Arturo GRAVITY WAVES NUMERICAL ANALYSIS/MODELING OROGRAPHIC EFFECTS WIND |
title_short |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
title_full |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
title_fullStr |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
title_full_unstemmed |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
title_sort |
A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation |
dc.creator.none.fl_str_mv |
Pulido, Manuel Arturo Rodas, Claudio José Francisco |
author |
Pulido, Manuel Arturo |
author_facet |
Pulido, Manuel Arturo Rodas, Claudio José Francisco |
author_role |
author |
author2 |
Rodas, Claudio José Francisco |
author2_role |
author |
dc.subject.none.fl_str_mv |
GRAVITY WAVES NUMERICAL ANALYSIS/MODELING OROGRAPHIC EFFECTS WIND |
topic |
GRAVITY WAVES NUMERICAL ANALYSIS/MODELING OROGRAPHIC EFFECTS WIND |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ray techniques are a promising tool for developing orographic gravity wave drag schemes. However, the modeling of the propagation of orographic waves using standard ray theory in realistic background wind conditions usually encounters several regions, called caustics, where the first-order ray approximation breaks down. In this work the authors develop a higher-order approximation than standard ray theory, named the Gaussian beam approximation, for orographic gravity waves in a background wind that depends on height. The analytical results show that this formulation is free of the singularities that arise in ray theory. Orographic gravity waves that propagate in a background wind that turns with height?the same conditions as in the work of Shutts?are examined under the Gaussian beam approximation. The evolution of the amplitude is well defined in this approximation even at caustics and at the forcing level. When comparing results from the Gaussian beam approximation with high-resolution numerical simulations that compute the exact solution, there is good agreement of the amplitude and phase fields. Realistic orography is represented by means of a superposition of multiple Gaussians in wavenumber space that fit the spectrum of the orography. The technique appears to give a good representation of the disturbances generated by flow over realistic orography. Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste; Argentina |
description |
Ray techniques are a promising tool for developing orographic gravity wave drag schemes. However, the modeling of the propagation of orographic waves using standard ray theory in realistic background wind conditions usually encounters several regions, called caustics, where the first-order ray approximation breaks down. In this work the authors develop a higher-order approximation than standard ray theory, named the Gaussian beam approximation, for orographic gravity waves in a background wind that depends on height. The analytical results show that this formulation is free of the singularities that arise in ray theory. Orographic gravity waves that propagate in a background wind that turns with height?the same conditions as in the work of Shutts?are examined under the Gaussian beam approximation. The evolution of the amplitude is well defined in this approximation even at caustics and at the forcing level. When comparing results from the Gaussian beam approximation with high-resolution numerical simulations that compute the exact solution, there is good agreement of the amplitude and phase fields. Realistic orography is represented by means of a superposition of multiple Gaussians in wavenumber space that fit the spectrum of the orography. The technique appears to give a good representation of the disturbances generated by flow over realistic orography. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148687 Pulido, Manuel Arturo; Rodas, Claudio José Francisco; A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation; Amer Meteorological Soc; Journal of The Atmospheric Sciences; 68; 1; 1-2011; 46-60 0022-4928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148687 |
identifier_str_mv |
Pulido, Manuel Arturo; Rodas, Claudio José Francisco; A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation; Amer Meteorological Soc; Journal of The Atmospheric Sciences; 68; 1; 1-2011; 46-60 0022-4928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/atsc/68/1/2010jas3468.1.xml info:eu-repo/semantics/altIdentifier/doi/10.1175/2010JAS3468.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Meteorological Soc |
publisher.none.fl_str_mv |
Amer Meteorological Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613575161675776 |
score |
13.070432 |