Do transience gravity waves in a shear flow break?

Autores
Pulido, Manuel Arturo; Rodas, Claudio José Francisco
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained.
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina
Materia
Convective Instability
Quasi-Optics
Gravity Wave Parameterizations
Ray Tracing
Wave Breaking
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24787

id CONICETDig_1e2467fbf259240f62c8aa2c5785e3bf
oai_identifier_str oai:ri.conicet.gov.ar:11336/24787
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Do transience gravity waves in a shear flow break?Pulido, Manuel ArturoRodas, Claudio José FranciscoConvective InstabilityQuasi-OpticsGravity Wave ParameterizationsRay TracingWave Breakinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained.Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; ArgentinaJohn Wiley & Sons Ltd2008-07-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24787Pulido, Manuel Arturo; Rodas, Claudio José Francisco; Do transience gravity waves in a shear flow break?; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 134; 634; 10-7-2008; 1083-10940035-9009CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.272/fullinfo:eu-repo/semantics/altIdentifier/doi/10.1002/qj.272info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:07Zoai:ri.conicet.gov.ar:11336/24787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:07.705CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Do transience gravity waves in a shear flow break?
title Do transience gravity waves in a shear flow break?
spellingShingle Do transience gravity waves in a shear flow break?
Pulido, Manuel Arturo
Convective Instability
Quasi-Optics
Gravity Wave Parameterizations
Ray Tracing
Wave Breaking
title_short Do transience gravity waves in a shear flow break?
title_full Do transience gravity waves in a shear flow break?
title_fullStr Do transience gravity waves in a shear flow break?
title_full_unstemmed Do transience gravity waves in a shear flow break?
title_sort Do transience gravity waves in a shear flow break?
dc.creator.none.fl_str_mv Pulido, Manuel Arturo
Rodas, Claudio José Francisco
author Pulido, Manuel Arturo
author_facet Pulido, Manuel Arturo
Rodas, Claudio José Francisco
author_role author
author2 Rodas, Claudio José Francisco
author2_role author
dc.subject.none.fl_str_mv Convective Instability
Quasi-Optics
Gravity Wave Parameterizations
Ray Tracing
Wave Breaking
topic Convective Instability
Quasi-Optics
Gravity Wave Parameterizations
Ray Tracing
Wave Breaking
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained.
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina
description The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained.
publishDate 2008
dc.date.none.fl_str_mv 2008-07-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24787
Pulido, Manuel Arturo; Rodas, Claudio José Francisco; Do transience gravity waves in a shear flow break?; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 134; 634; 10-7-2008; 1083-1094
0035-9009
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24787
identifier_str_mv Pulido, Manuel Arturo; Rodas, Claudio José Francisco; Do transience gravity waves in a shear flow break?; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 134; 634; 10-7-2008; 1083-1094
0035-9009
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.272/full
info:eu-repo/semantics/altIdentifier/doi/10.1002/qj.272
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083430867009536
score 13.22299