Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction

Autores
Kuchen, Benjamín; Groff, Maria Carla; Pantano, María Nadia; Pedrozo, Lina Paula; Vazquez, Fabio; Scaglia, Gustavo Juan Eduardo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influence on human health and its use is criticized. Biocontrol emerges as an alternative in wine pre-fermentation, but there is limited development in its applicability. Managing kinetics is relevant in the microbial interaction process. pH was identified as a factor affecting the interaction kinetics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical modeling allows insight into offline parameters and the influence of physicochemical factors in the environment. Incorporating submodels that explain manipulable factors (pH), the process can be optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were studied at different pH levels maintained constant over time. The improved Ramón-Portugal model was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile was performed using the Monte Carlo method, and a dynamic optimization was carried out using a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimization achieved a lower initial spoilage population peak (99% less) and reached a lower final population (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable profile would allow an early sequential inoculation of S. cerevisiae. The models explained parameters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensitivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a technological standpoint, the study highlights the importance of handling variable profiles in the controller associated with the pH management actuators in the process without incurring additional costs.
Fil: Kuchen, Benjamín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Pantano, María Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Pedrozo, Lina Paula. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Vazquez, Fabio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
Materia
BIOCONTROL
WINE SPOILEAGE
KILLER YEAST
FERMENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/240925

id CONICETDig_ed2f5be284a30d6c570b84d5568f0852
oai_identifier_str oai:ri.conicet.gov.ar:11336/240925
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism InteractionKuchen, BenjamínGroff, Maria CarlaPantano, María NadiaPedrozo, Lina PaulaVazquez, FabioScaglia, Gustavo Juan EduardoBIOCONTROLWINE SPOILEAGEKILLER YEASTFERMENTATIONhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influence on human health and its use is criticized. Biocontrol emerges as an alternative in wine pre-fermentation, but there is limited development in its applicability. Managing kinetics is relevant in the microbial interaction process. pH was identified as a factor affecting the interaction kinetics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical modeling allows insight into offline parameters and the influence of physicochemical factors in the environment. Incorporating submodels that explain manipulable factors (pH), the process can be optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were studied at different pH levels maintained constant over time. The improved Ramón-Portugal model was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile was performed using the Monte Carlo method, and a dynamic optimization was carried out using a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimization achieved a lower initial spoilage population peak (99% less) and reached a lower final population (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable profile would allow an early sequential inoculation of S. cerevisiae. The models explained parameters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensitivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a technological standpoint, the study highlights the importance of handling variable profiles in the controller associated with the pH management actuators in the process without incurring additional costs.Fil: Kuchen, Benjamín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Pantano, María Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Pedrozo, Lina Paula. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Vazquez, Fabio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaMPDI2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240925Kuchen, Benjamín; Groff, Maria Carla; Pantano, María Nadia; Pedrozo, Lina Paula; Vazquez, Fabio; et al.; Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction; MPDI; Processes; 12; 7; 7-2024; 1-182227-9717CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/12/7/1446info:eu-repo/semantics/altIdentifier/doi/10.3390/pr12071446info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:21:21Zoai:ri.conicet.gov.ar:11336/240925instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:21:21.463CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
title Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
spellingShingle Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
Kuchen, Benjamín
BIOCONTROL
WINE SPOILEAGE
KILLER YEAST
FERMENTATION
title_short Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
title_full Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
title_fullStr Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
title_full_unstemmed Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
title_sort Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction
dc.creator.none.fl_str_mv Kuchen, Benjamín
Groff, Maria Carla
Pantano, María Nadia
Pedrozo, Lina Paula
Vazquez, Fabio
Scaglia, Gustavo Juan Eduardo
author Kuchen, Benjamín
author_facet Kuchen, Benjamín
Groff, Maria Carla
Pantano, María Nadia
Pedrozo, Lina Paula
Vazquez, Fabio
Scaglia, Gustavo Juan Eduardo
author_role author
author2 Groff, Maria Carla
Pantano, María Nadia
Pedrozo, Lina Paula
Vazquez, Fabio
Scaglia, Gustavo Juan Eduardo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BIOCONTROL
WINE SPOILEAGE
KILLER YEAST
FERMENTATION
topic BIOCONTROL
WINE SPOILEAGE
KILLER YEAST
FERMENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influence on human health and its use is criticized. Biocontrol emerges as an alternative in wine pre-fermentation, but there is limited development in its applicability. Managing kinetics is relevant in the microbial interaction process. pH was identified as a factor affecting the interaction kinetics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical modeling allows insight into offline parameters and the influence of physicochemical factors in the environment. Incorporating submodels that explain manipulable factors (pH), the process can be optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were studied at different pH levels maintained constant over time. The improved Ramón-Portugal model was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile was performed using the Monte Carlo method, and a dynamic optimization was carried out using a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimization achieved a lower initial spoilage population peak (99% less) and reached a lower final population (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable profile would allow an early sequential inoculation of S. cerevisiae. The models explained parameters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensitivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a technological standpoint, the study highlights the importance of handling variable profiles in the controller associated with the pH management actuators in the process without incurring additional costs.
Fil: Kuchen, Benjamín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Pantano, María Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Pedrozo, Lina Paula. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Vazquez, Fabio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
description The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influence on human health and its use is criticized. Biocontrol emerges as an alternative in wine pre-fermentation, but there is limited development in its applicability. Managing kinetics is relevant in the microbial interaction process. pH was identified as a factor affecting the interaction kinetics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical modeling allows insight into offline parameters and the influence of physicochemical factors in the environment. Incorporating submodels that explain manipulable factors (pH), the process can be optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were studied at different pH levels maintained constant over time. The improved Ramón-Portugal model was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile was performed using the Monte Carlo method, and a dynamic optimization was carried out using a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimization achieved a lower initial spoilage population peak (99% less) and reached a lower final population (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable profile would allow an early sequential inoculation of S. cerevisiae. The models explained parameters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensitivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a technological standpoint, the study highlights the importance of handling variable profiles in the controller associated with the pH management actuators in the process without incurring additional costs.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/240925
Kuchen, Benjamín; Groff, Maria Carla; Pantano, María Nadia; Pedrozo, Lina Paula; Vazquez, Fabio; et al.; Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction; MPDI; Processes; 12; 7; 7-2024; 1-18
2227-9717
CONICET Digital
CONICET
url http://hdl.handle.net/11336/240925
identifier_str_mv Kuchen, Benjamín; Groff, Maria Carla; Pantano, María Nadia; Pedrozo, Lina Paula; Vazquez, Fabio; et al.; Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction; MPDI; Processes; 12; 7; 7-2024; 1-18
2227-9717
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/12/7/1446
info:eu-repo/semantics/altIdentifier/doi/10.3390/pr12071446
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MPDI
publisher.none.fl_str_mv MPDI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083362247147520
score 13.22299