Excess protons in mesoscopic water-acetone nanoclusters
- Autores
- Semino, Rocio; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel Hector
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m = 50 water molecules and n = 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates,and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfermechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain.
Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Martí, Jordi. Universidad Politécnica de Catalunya; España
Fil: Guàrdia, Elvira. Universidad Politécnica de Catalunya; España
Fil: Laria, Daniel Hector. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina - Materia
-
PROTON TRANSPORT
NANOCLUSTERS
WATER-ACETONE
SOLVATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268295
Ver los metadatos del registro completo
id |
CONICETDig_ed02757202f56622c842bcd2d13e1676 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268295 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Excess protons in mesoscopic water-acetone nanoclustersSemino, RocioMartí, JordiGuàrdia, ElviraLaria, Daniel HectorPROTON TRANSPORTNANOCLUSTERSWATER-ACETONESOLVATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m = 50 water molecules and n = 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates,and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfermechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain.Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Martí, Jordi. Universidad Politécnica de Catalunya; EspañaFil: Guàrdia, Elvira. Universidad Politécnica de Catalunya; EspañaFil: Laria, Daniel Hector. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaAmerican Institute of Physics2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268295Semino, Rocio; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel Hector; Excess protons in mesoscopic water-acetone nanoclusters; American Institute of Physics; Journal of Chemical Physics; 137; 19; 11-2012; 1943010-19430180021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4766201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:58Zoai:ri.conicet.gov.ar:11336/268295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:58.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Excess protons in mesoscopic water-acetone nanoclusters |
title |
Excess protons in mesoscopic water-acetone nanoclusters |
spellingShingle |
Excess protons in mesoscopic water-acetone nanoclusters Semino, Rocio PROTON TRANSPORT NANOCLUSTERS WATER-ACETONE SOLVATION |
title_short |
Excess protons in mesoscopic water-acetone nanoclusters |
title_full |
Excess protons in mesoscopic water-acetone nanoclusters |
title_fullStr |
Excess protons in mesoscopic water-acetone nanoclusters |
title_full_unstemmed |
Excess protons in mesoscopic water-acetone nanoclusters |
title_sort |
Excess protons in mesoscopic water-acetone nanoclusters |
dc.creator.none.fl_str_mv |
Semino, Rocio Martí, Jordi Guàrdia, Elvira Laria, Daniel Hector |
author |
Semino, Rocio |
author_facet |
Semino, Rocio Martí, Jordi Guàrdia, Elvira Laria, Daniel Hector |
author_role |
author |
author2 |
Martí, Jordi Guàrdia, Elvira Laria, Daniel Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
PROTON TRANSPORT NANOCLUSTERS WATER-ACETONE SOLVATION |
topic |
PROTON TRANSPORT NANOCLUSTERS WATER-ACETONE SOLVATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m = 50 water molecules and n = 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates,and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfermechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain. Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Martí, Jordi. Universidad Politécnica de Catalunya; España Fil: Guàrdia, Elvira. Universidad Politécnica de Catalunya; España Fil: Laria, Daniel Hector. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina |
description |
We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m = 50 water molecules and n = 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates,and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfermechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268295 Semino, Rocio; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel Hector; Excess protons in mesoscopic water-acetone nanoclusters; American Institute of Physics; Journal of Chemical Physics; 137; 19; 11-2012; 1943010-1943018 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268295 |
identifier_str_mv |
Semino, Rocio; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel Hector; Excess protons in mesoscopic water-acetone nanoclusters; American Institute of Physics; Journal of Chemical Physics; 137; 19; 11-2012; 1943010-1943018 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4766201 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269612771639296 |
score |
13.13397 |