Excess protons in water-acetone mixtures
- Autores
- Semino, Rocio; Laria, Daniel Hector
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction xw = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H3O+ moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H3O·(H2O)3]+ configurations, in detriment of Zundel-like [H·(H2O)2]+ ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of xw ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes “occupied” by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex.
Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina - Materia
-
PROTON
WATER-ACETONE MIXTURES
SOLVATION
PROTON TRANSFER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268293
Ver los metadatos del registro completo
id |
CONICETDig_644965fb59a936eb345c68b5ac4baae9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268293 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Excess protons in water-acetone mixturesSemino, RocioLaria, Daniel HectorPROTONWATER-ACETONE MIXTURESSOLVATIONPROTON TRANSFERhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction xw = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H3O+ moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H3O·(H2O)3]+ configurations, in detriment of Zundel-like [H·(H2O)2]+ ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of xw ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes “occupied” by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex.Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaAmerican Institute of Physics2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268293Semino, Rocio; Laria, Daniel Hector; Excess protons in water-acetone mixtures; American Institute of Physics; Journal of Chemical Physics; 136; 19; 5-2012; 19450301-194503100021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4717712info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:44Zoai:ri.conicet.gov.ar:11336/268293instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:44.593CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Excess protons in water-acetone mixtures |
title |
Excess protons in water-acetone mixtures |
spellingShingle |
Excess protons in water-acetone mixtures Semino, Rocio PROTON WATER-ACETONE MIXTURES SOLVATION PROTON TRANSFER |
title_short |
Excess protons in water-acetone mixtures |
title_full |
Excess protons in water-acetone mixtures |
title_fullStr |
Excess protons in water-acetone mixtures |
title_full_unstemmed |
Excess protons in water-acetone mixtures |
title_sort |
Excess protons in water-acetone mixtures |
dc.creator.none.fl_str_mv |
Semino, Rocio Laria, Daniel Hector |
author |
Semino, Rocio |
author_facet |
Semino, Rocio Laria, Daniel Hector |
author_role |
author |
author2 |
Laria, Daniel Hector |
author2_role |
author |
dc.subject.none.fl_str_mv |
PROTON WATER-ACETONE MIXTURES SOLVATION PROTON TRANSFER |
topic |
PROTON WATER-ACETONE MIXTURES SOLVATION PROTON TRANSFER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction xw = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H3O+ moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H3O·(H2O)3]+ configurations, in detriment of Zundel-like [H·(H2O)2]+ ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of xw ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes “occupied” by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex. Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina |
description |
Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction xw = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H3O+ moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H3O·(H2O)3]+ configurations, in detriment of Zundel-like [H·(H2O)2]+ ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of xw ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes “occupied” by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268293 Semino, Rocio; Laria, Daniel Hector; Excess protons in water-acetone mixtures; American Institute of Physics; Journal of Chemical Physics; 136; 19; 5-2012; 19450301-19450310 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268293 |
identifier_str_mv |
Semino, Rocio; Laria, Daniel Hector; Excess protons in water-acetone mixtures; American Institute of Physics; Journal of Chemical Physics; 136; 19; 5-2012; 19450301-19450310 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4717712 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268619128438784 |
score |
13.13397 |