Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions

Autores
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; Chile
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Q-BOSONS
INTEGRABLE BOUNDARY INTERACTIONS
DOUBLE AFFINE HECKE ALGEBRA
BETHE ANSATZ
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89509

id CONICETDig_ecae14b20ebade8a677612d21a224f4d
oai_identifier_str oai:ri.conicet.gov.ar:11336/89509
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactionsvan Diejen, Jan FelipeEmsiz, ErdalZurrián, Ignacio NahuelQ-BOSONSINTEGRABLE BOUNDARY INTERACTIONSDOUBLE AFFINE HECKE ALGEBRABETHE ANSATZHYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.Fil: van Diejen, Jan Felipe. Universidad de Talca; ChileFil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; ChileFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaBirkhauser Verlag Ag2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89509van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-13841424-06371424-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00023-018-0658-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-018-0658-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:45Zoai:ri.conicet.gov.ar:11336/89509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:46.02CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
title Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
spellingShingle Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
van Diejen, Jan Felipe
Q-BOSONS
INTEGRABLE BOUNDARY INTERACTIONS
DOUBLE AFFINE HECKE ALGEBRA
BETHE ANSATZ
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL
title_short Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
title_full Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
title_fullStr Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
title_full_unstemmed Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
title_sort Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
dc.creator.none.fl_str_mv van Diejen, Jan Felipe
Emsiz, Erdal
Zurrián, Ignacio Nahuel
author van Diejen, Jan Felipe
author_facet van Diejen, Jan Felipe
Emsiz, Erdal
Zurrián, Ignacio Nahuel
author_role author
author2 Emsiz, Erdal
Zurrián, Ignacio Nahuel
author2_role author
author
dc.subject.none.fl_str_mv Q-BOSONS
INTEGRABLE BOUNDARY INTERACTIONS
DOUBLE AFFINE HECKE ALGEBRA
BETHE ANSATZ
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL
topic Q-BOSONS
INTEGRABLE BOUNDARY INTERACTIONS
DOUBLE AFFINE HECKE ALGEBRA
BETHE ANSATZ
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; Chile
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89509
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-1384
1424-0637
1424-0661
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89509
identifier_str_mv van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-1384
1424-0637
1424-0661
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00023-018-0658-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-018-0658-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083467073290240
score 13.22299