Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions
- Autores
- van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; Chile
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Q-BOSONS
INTEGRABLE BOUNDARY INTERACTIONS
DOUBLE AFFINE HECKE ALGEBRA
BETHE ANSATZ
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89509
Ver los metadatos del registro completo
id |
CONICETDig_ecae14b20ebade8a677612d21a224f4d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89509 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactionsvan Diejen, Jan FelipeEmsiz, ErdalZurrián, Ignacio NahuelQ-BOSONSINTEGRABLE BOUNDARY INTERACTIONSDOUBLE AFFINE HECKE ALGEBRABETHE ANSATZHYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.Fil: van Diejen, Jan Felipe. Universidad de Talca; ChileFil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; ChileFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaBirkhauser Verlag Ag2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89509van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-13841424-06371424-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00023-018-0658-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-018-0658-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:45Zoai:ri.conicet.gov.ar:11336/89509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:46.02CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
title |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
spellingShingle |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions van Diejen, Jan Felipe Q-BOSONS INTEGRABLE BOUNDARY INTERACTIONS DOUBLE AFFINE HECKE ALGEBRA BETHE ANSATZ HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL |
title_short |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
title_full |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
title_fullStr |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
title_full_unstemmed |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
title_sort |
Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions |
dc.creator.none.fl_str_mv |
van Diejen, Jan Felipe Emsiz, Erdal Zurrián, Ignacio Nahuel |
author |
van Diejen, Jan Felipe |
author_facet |
van Diejen, Jan Felipe Emsiz, Erdal Zurrián, Ignacio Nahuel |
author_role |
author |
author2 |
Emsiz, Erdal Zurrián, Ignacio Nahuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Q-BOSONS INTEGRABLE BOUNDARY INTERACTIONS DOUBLE AFFINE HECKE ALGEBRA BETHE ANSATZ HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL |
topic |
Q-BOSONS INTEGRABLE BOUNDARY INTERACTIONS DOUBLE AFFINE HECKE ALGEBRA BETHE ANSATZ HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials. Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile Fil: Emsiz, Erdal. Pontificia Universidad Católica de Chile; Chile Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We employ a discrete integral-reflection representation of the double affine Hecke algebra of type C∨C at the critical level q = 1 , to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89509 van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-1384 1424-0637 1424-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89509 |
identifier_str_mv |
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Completeness of the Bethe Ansatz for an Open q -Boson System with Integrable Boundary Interactions; Birkhauser Verlag Ag; Annales Henri Poincare; 19; 5; 5-2018; 1349-1384 1424-0637 1424-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00023-018-0658-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-018-0658-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083467073290240 |
score |
13.22299 |