Entanglement properties and momentum distributions of hard-core anyons on a ring

Autores
Santachiara, Raoul; Stauffer, Franck; Cabra, Daniel Carlos
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the one-particle von Neumann entropy of a system of N hard-core anyons on a ring. The entropy is found to have a clear dependence on the anyonic parameter which characterizes the generalized fractional statistics described by the anyons. This confirms that the entanglement is a valuable quantity for investigating topological properties of quantum states. We derive the generalization to anyonic statistics of the Lenard formula for the one-particle density matrix of N hard-core bosons in the large N limit and extend our results by a numerical analysis of the entanglement entropy, providing additional insight into the problem under consideration.
Facultad de Ciencias Exactas
Materia
Física
quantum integrability (Bethe ansatz)
quantum wires (theory)
entanglement in extended quantum systems (theory)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132134

id SEDICI_467755b6d18f7713ccc7fce8b54fd30b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132134
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Entanglement properties and momentum distributions of hard-core anyons on a ringSantachiara, RaoulStauffer, FranckCabra, Daniel CarlosFísicaquantum integrability (Bethe ansatz)quantum wires (theory)entanglement in extended quantum systems (theory)We study the one-particle von Neumann entropy of a system of N hard-core anyons on a ring. The entropy is found to have a clear dependence on the anyonic parameter which characterizes the generalized fractional statistics described by the anyons. This confirms that the entanglement is a valuable quantity for investigating topological properties of quantum states. We derive the generalization to anyonic statistics of the Lenard formula for the one-particle density matrix of N hard-core bosons in the large N limit and extend our results by a numerical analysis of the entanglement entropy, providing additional insight into the problem under consideration.Facultad de Ciencias Exactas2007-05-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132134spainfo:eu-repo/semantics/altIdentifier/issn/1742-5468info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0610402info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2007/05/l05003info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:23:08Zoai:sedici.unlp.edu.ar:10915/132134Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:23:08.796SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Entanglement properties and momentum distributions of hard-core anyons on a ring
title Entanglement properties and momentum distributions of hard-core anyons on a ring
spellingShingle Entanglement properties and momentum distributions of hard-core anyons on a ring
Santachiara, Raoul
Física
quantum integrability (Bethe ansatz)
quantum wires (theory)
entanglement in extended quantum systems (theory)
title_short Entanglement properties and momentum distributions of hard-core anyons on a ring
title_full Entanglement properties and momentum distributions of hard-core anyons on a ring
title_fullStr Entanglement properties and momentum distributions of hard-core anyons on a ring
title_full_unstemmed Entanglement properties and momentum distributions of hard-core anyons on a ring
title_sort Entanglement properties and momentum distributions of hard-core anyons on a ring
dc.creator.none.fl_str_mv Santachiara, Raoul
Stauffer, Franck
Cabra, Daniel Carlos
author Santachiara, Raoul
author_facet Santachiara, Raoul
Stauffer, Franck
Cabra, Daniel Carlos
author_role author
author2 Stauffer, Franck
Cabra, Daniel Carlos
author2_role author
author
dc.subject.none.fl_str_mv Física
quantum integrability (Bethe ansatz)
quantum wires (theory)
entanglement in extended quantum systems (theory)
topic Física
quantum integrability (Bethe ansatz)
quantum wires (theory)
entanglement in extended quantum systems (theory)
dc.description.none.fl_txt_mv We study the one-particle von Neumann entropy of a system of N hard-core anyons on a ring. The entropy is found to have a clear dependence on the anyonic parameter which characterizes the generalized fractional statistics described by the anyons. This confirms that the entanglement is a valuable quantity for investigating topological properties of quantum states. We derive the generalization to anyonic statistics of the Lenard formula for the one-particle density matrix of N hard-core bosons in the large N limit and extend our results by a numerical analysis of the entanglement entropy, providing additional insight into the problem under consideration.
Facultad de Ciencias Exactas
description We study the one-particle von Neumann entropy of a system of N hard-core anyons on a ring. The entropy is found to have a clear dependence on the anyonic parameter which characterizes the generalized fractional statistics described by the anyons. This confirms that the entanglement is a valuable quantity for investigating topological properties of quantum states. We derive the generalization to anyonic statistics of the Lenard formula for the one-particle density matrix of N hard-core bosons in the large N limit and extend our results by a numerical analysis of the entanglement entropy, providing additional insight into the problem under consideration.
publishDate 2007
dc.date.none.fl_str_mv 2007-05-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132134
url http://sedici.unlp.edu.ar/handle/10915/132134
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1742-5468
info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0610402
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2007/05/l05003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064286463426560
score 13.22299