Dense branched morphology in electrochemical deposition in a thin cell vertically oriented

Autores
González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.
Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Rosso, M.. Centre National de la Recherche Scientifique; Francia
Materia
Electrodeposition
Thin cells
Ion transport
Numerical simulations
Migration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/103683

id CONICETDig_ec8f5198552a19d806556d5670b9ea97
oai_identifier_str oai:ri.conicet.gov.ar:11336/103683
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dense branched morphology in electrochemical deposition in a thin cell vertically orientedGonzález, Graciela AliciaSoba, AlejandroMarshall, Guillermo RicardoMolina, Fernando VíctorRosso, M.ElectrodepositionThin cellsIon transportNumerical simulationsMigrationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rosso, M.. Centre National de la Recherche Scientifique; FranciaPergamon-Elsevier Science Ltd2007-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103683González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-1400013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468607003416info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2007.02.069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:18Zoai:ri.conicet.gov.ar:11336/103683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:18.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
title Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
spellingShingle Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
González, Graciela Alicia
Electrodeposition
Thin cells
Ion transport
Numerical simulations
Migration
title_short Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
title_full Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
title_fullStr Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
title_full_unstemmed Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
title_sort Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
dc.creator.none.fl_str_mv González, Graciela Alicia
Soba, Alejandro
Marshall, Guillermo Ricardo
Molina, Fernando Víctor
Rosso, M.
author González, Graciela Alicia
author_facet González, Graciela Alicia
Soba, Alejandro
Marshall, Guillermo Ricardo
Molina, Fernando Víctor
Rosso, M.
author_role author
author2 Soba, Alejandro
Marshall, Guillermo Ricardo
Molina, Fernando Víctor
Rosso, M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Electrodeposition
Thin cells
Ion transport
Numerical simulations
Migration
topic Electrodeposition
Thin cells
Ion transport
Numerical simulations
Migration
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.
Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Rosso, M.. Centre National de la Recherche Scientifique; Francia
description Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.
publishDate 2007
dc.date.none.fl_str_mv 2007-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/103683
González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-140
0013-4686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/103683
identifier_str_mv González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-140
0013-4686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468607003416
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2007.02.069
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613275221753856
score 13.070432