Dense branched morphology in electrochemical deposition in a thin cell vertically oriented
- Autores
- González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.
Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Rosso, M.. Centre National de la Recherche Scientifique; Francia - Materia
-
Electrodeposition
Thin cells
Ion transport
Numerical simulations
Migration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103683
Ver los metadatos del registro completo
id |
CONICETDig_ec8f5198552a19d806556d5670b9ea97 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103683 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dense branched morphology in electrochemical deposition in a thin cell vertically orientedGonzález, Graciela AliciaSoba, AlejandroMarshall, Guillermo RicardoMolina, Fernando VíctorRosso, M.ElectrodepositionThin cellsIon transportNumerical simulationsMigrationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments.Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rosso, M.. Centre National de la Recherche Scientifique; FranciaPergamon-Elsevier Science Ltd2007-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103683González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-1400013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468607003416info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2007.02.069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:18Zoai:ri.conicet.gov.ar:11336/103683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:18.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
title |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
spellingShingle |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented González, Graciela Alicia Electrodeposition Thin cells Ion transport Numerical simulations Migration |
title_short |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
title_full |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
title_fullStr |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
title_full_unstemmed |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
title_sort |
Dense branched morphology in electrochemical deposition in a thin cell vertically oriented |
dc.creator.none.fl_str_mv |
González, Graciela Alicia Soba, Alejandro Marshall, Guillermo Ricardo Molina, Fernando Víctor Rosso, M. |
author |
González, Graciela Alicia |
author_facet |
González, Graciela Alicia Soba, Alejandro Marshall, Guillermo Ricardo Molina, Fernando Víctor Rosso, M. |
author_role |
author |
author2 |
Soba, Alejandro Marshall, Guillermo Ricardo Molina, Fernando Víctor Rosso, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Electrodeposition Thin cells Ion transport Numerical simulations Migration |
topic |
Electrodeposition Thin cells Ion transport Numerical simulations Migration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. Fil: González, Graciela Alicia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Soba, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marshall, Guillermo Ricardo. Cornell University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Molina, Fernando Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Rosso, M.. Centre National de la Recherche Scientifique; Francia |
description |
Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst–Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103683 González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-140 0013-4686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103683 |
identifier_str_mv |
González, Graciela Alicia; Soba, Alejandro; Marshall, Guillermo Ricardo; Molina, Fernando Víctor; Rosso, M.; Dense branched morphology in electrochemical deposition in a thin cell vertically oriented; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 53; 1; 11-2007; 133-140 0013-4686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468607003416 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2007.02.069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613275221753856 |
score |
13.070432 |