Testing for serial correlation in hierarchical linear models
- Autores
- Alejo, Osvaldo Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions.
Fil: Alejo, Osvaldo Javier. Universidad Nacional de La Plata. Facultad de Ciencias Económicas. Departamento de Ciencias Económicas. Centro de Estudios Distributivos Laborales y Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universidad de Barcelona; España
Fil: Sosa Escudero, Walter. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CLUSTERS
RANDOM EFFECTS
SERIAL CORRELATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87244
Ver los metadatos del registro completo
id |
CONICETDig_427c38d5a5755d4f71b7c733f5ab25a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87244 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Testing for serial correlation in hierarchical linear modelsAlejo, Osvaldo JavierMontes Rojas, Gabriel VictorioSosa Escudero, WalterCLUSTERSRANDOM EFFECTSSERIAL CORRELATIONhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions.Fil: Alejo, Osvaldo Javier. Universidad Nacional de La Plata. Facultad de Ciencias Económicas. Departamento de Ciencias Económicas. Centro de Estudios Distributivos Laborales y Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universidad de Barcelona; EspañaFil: Sosa Escudero, Walter. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87244Alejo, Osvaldo Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; Testing for serial correlation in hierarchical linear models; Elsevier; Journal Of Multivariate Analysis; 165; 5-2018; 101-1160047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17307285info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2017.11.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:11Zoai:ri.conicet.gov.ar:11336/87244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:12.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Testing for serial correlation in hierarchical linear models |
title |
Testing for serial correlation in hierarchical linear models |
spellingShingle |
Testing for serial correlation in hierarchical linear models Alejo, Osvaldo Javier CLUSTERS RANDOM EFFECTS SERIAL CORRELATION |
title_short |
Testing for serial correlation in hierarchical linear models |
title_full |
Testing for serial correlation in hierarchical linear models |
title_fullStr |
Testing for serial correlation in hierarchical linear models |
title_full_unstemmed |
Testing for serial correlation in hierarchical linear models |
title_sort |
Testing for serial correlation in hierarchical linear models |
dc.creator.none.fl_str_mv |
Alejo, Osvaldo Javier Montes Rojas, Gabriel Victorio Sosa Escudero, Walter |
author |
Alejo, Osvaldo Javier |
author_facet |
Alejo, Osvaldo Javier Montes Rojas, Gabriel Victorio Sosa Escudero, Walter |
author_role |
author |
author2 |
Montes Rojas, Gabriel Victorio Sosa Escudero, Walter |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CLUSTERS RANDOM EFFECTS SERIAL CORRELATION |
topic |
CLUSTERS RANDOM EFFECTS SERIAL CORRELATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions. Fil: Alejo, Osvaldo Javier. Universidad Nacional de La Plata. Facultad de Ciencias Económicas. Departamento de Ciencias Económicas. Centro de Estudios Distributivos Laborales y Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universidad de Barcelona; España Fil: Sosa Escudero, Walter. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper proposes a simple hierarchical model and a testing strategy to identify intra-cluster correlations, in the form of nested random effects and serially correlated error components. We focus on intra-cluster serial correlation at different nested levels, a topic that has not been studied in the literature before. A Neyman's C(α) framework is used to derive LM-type tests that allow researchers to identify the appropriate level of clustering as well as the type of intra-group correlation. An extensive Monte Carlo exercise shows that the proposed tests perform well in finite samples and under non-Gaussian distributions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87244 Alejo, Osvaldo Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; Testing for serial correlation in hierarchical linear models; Elsevier; Journal Of Multivariate Analysis; 165; 5-2018; 101-116 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87244 |
identifier_str_mv |
Alejo, Osvaldo Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; Testing for serial correlation in hierarchical linear models; Elsevier; Journal Of Multivariate Analysis; 165; 5-2018; 101-116 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17307285 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2017.11.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613018527203328 |
score |
13.070432 |