Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm

Autores
Picó, J.; Picó Marco, E.; Vignoni, A.; de Battista, Hernan
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm. It achieves finite time convergence by means of a continuous action, without using information about derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed from different points of view, most of them based on the use of scaling symmetries (homogeneity), or non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates and a time-scaling are used. In the new coordinates and time–space, the transformed system is stabilized using any appropriate standard design method. Conditions under which the combination of the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given. Provided convergence in the transformed space is faster than O(1/τ )—where τ is the transformed time— convergence of the original system takes place in finite-time. The method is illustrated by designing a generalized super-twisting observer able to cope with a broad class of perturbations.
Fil: Picó, J.. Universidad Politecnica de Valencia; España
Fil: Picó Marco, E.. Universidad Politecnica de Valencia; España
Fil: Vignoni, A.. Universidad Politecnica de Valencia; España
Fil: de Battista, Hernan. Universidad Nacional de la Plata. Facultad de Ingenieria. Departamento de Electrotecnia. Laboratorio de Electronica Ind., Control E Instrumentac.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Stability Analysis
Convergence Analysis
Sliding Mode
Stability Preserving Maps
Super-Twisting Algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13578

id CONICETDig_eb271243684b03c861ba5deb71df6ff1
oai_identifier_str oai:ri.conicet.gov.ar:11336/13578
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithmPicó, J.Picó Marco, E.Vignoni, A.de Battista, HernanStability AnalysisConvergence AnalysisSliding ModeStability Preserving MapsSuper-Twisting Algorithmhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm. It achieves finite time convergence by means of a continuous action, without using information about derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed from different points of view, most of them based on the use of scaling symmetries (homogeneity), or non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates and a time-scaling are used. In the new coordinates and time–space, the transformed system is stabilized using any appropriate standard design method. Conditions under which the combination of the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given. Provided convergence in the transformed space is faster than O(1/τ )—where τ is the transformed time— convergence of the original system takes place in finite-time. The method is illustrated by designing a generalized super-twisting observer able to cope with a broad class of perturbations.Fil: Picó, J.. Universidad Politecnica de Valencia; EspañaFil: Picó Marco, E.. Universidad Politecnica de Valencia; EspañaFil: Vignoni, A.. Universidad Politecnica de Valencia; EspañaFil: de Battista, Hernan. Universidad Nacional de la Plata. Facultad de Ingenieria. Departamento de Electrotecnia. Laboratorio de Electronica Ind., Control E Instrumentac.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13578Picó, J.; Picó Marco, E.; Vignoni, A.; de Battista, Hernan; Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm; Elsevier; Automatica; 49; 2; 2-2013; 534-5390005-1098enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2012.11.022info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005109812005584info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:08Zoai:ri.conicet.gov.ar:11336/13578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:08.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
title Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
spellingShingle Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
Picó, J.
Stability Analysis
Convergence Analysis
Sliding Mode
Stability Preserving Maps
Super-Twisting Algorithm
title_short Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
title_full Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
title_fullStr Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
title_full_unstemmed Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
title_sort Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm
dc.creator.none.fl_str_mv Picó, J.
Picó Marco, E.
Vignoni, A.
de Battista, Hernan
author Picó, J.
author_facet Picó, J.
Picó Marco, E.
Vignoni, A.
de Battista, Hernan
author_role author
author2 Picó Marco, E.
Vignoni, A.
de Battista, Hernan
author2_role author
author
author
dc.subject.none.fl_str_mv Stability Analysis
Convergence Analysis
Sliding Mode
Stability Preserving Maps
Super-Twisting Algorithm
topic Stability Analysis
Convergence Analysis
Sliding Mode
Stability Preserving Maps
Super-Twisting Algorithm
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm. It achieves finite time convergence by means of a continuous action, without using information about derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed from different points of view, most of them based on the use of scaling symmetries (homogeneity), or non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates and a time-scaling are used. In the new coordinates and time–space, the transformed system is stabilized using any appropriate standard design method. Conditions under which the combination of the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given. Provided convergence in the transformed space is faster than O(1/τ )—where τ is the transformed time— convergence of the original system takes place in finite-time. The method is illustrated by designing a generalized super-twisting observer able to cope with a broad class of perturbations.
Fil: Picó, J.. Universidad Politecnica de Valencia; España
Fil: Picó Marco, E.. Universidad Politecnica de Valencia; España
Fil: Vignoni, A.. Universidad Politecnica de Valencia; España
Fil: de Battista, Hernan. Universidad Nacional de la Plata. Facultad de Ingenieria. Departamento de Electrotecnia. Laboratorio de Electronica Ind., Control E Instrumentac.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm. It achieves finite time convergence by means of a continuous action, without using information about derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed from different points of view, most of them based on the use of scaling symmetries (homogeneity), or non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates and a time-scaling are used. In the new coordinates and time–space, the transformed system is stabilized using any appropriate standard design method. Conditions under which the combination of the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given. Provided convergence in the transformed space is faster than O(1/τ )—where τ is the transformed time— convergence of the original system takes place in finite-time. The method is illustrated by designing a generalized super-twisting observer able to cope with a broad class of perturbations.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13578
Picó, J.; Picó Marco, E.; Vignoni, A.; de Battista, Hernan; Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm; Elsevier; Automatica; 49; 2; 2-2013; 534-539
0005-1098
url http://hdl.handle.net/11336/13578
identifier_str_mv Picó, J.; Picó Marco, E.; Vignoni, A.; de Battista, Hernan; Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm; Elsevier; Automatica; 49; 2; 2-2013; 534-539
0005-1098
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2012.11.022
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005109812005584
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269075935330304
score 13.13397