Theta lifts of Bianchi modular forms and applications to paramodularity
- Autores
- Berger, Tobias; Dembélé, Lassina; Pacetti, Ariel Martín; Şengün, Mehmet Haluk
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer.
Fil: Berger, Tobias. University Of Sheffield; Reino Unido
Fil: Dembélé, Lassina. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Şengün, Mehmet Haluk. School of Mathematics and Statistics. The University of Sheffield; Reino Unido - Materia
-
Bianchi modular forms
Theta lifting
Paramodularity Conjecture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93854
Ver los metadatos del registro completo
id |
CONICETDig_ea6425e04a2dbb35497d3374c16905d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93854 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Theta lifts of Bianchi modular forms and applications to paramodularityBerger, TobiasDembélé, LassinaPacetti, Ariel MartínŞengün, Mehmet HalukBianchi modular formsTheta liftingParamodularity Conjecturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer.Fil: Berger, Tobias. University Of Sheffield; Reino UnidoFil: Dembélé, Lassina. University of Warwick; Reino UnidoFil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Şengün, Mehmet Haluk. School of Mathematics and Statistics. The University of Sheffield; Reino UnidoOxford University Press2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93854Berger, Tobias; Dembélé, Lassina; Pacetti, Ariel Martín; Şengün, Mehmet Haluk; Theta lifts of Bianchi modular forms and applications to paramodularity; Oxford University Press; Journal of the London Mathematical Society; 92; 2; 11-2014; 353-3700024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jlms/article/92/2/353/1816277info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdv023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:43Zoai:ri.conicet.gov.ar:11336/93854instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:44.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title |
Theta lifts of Bianchi modular forms and applications to paramodularity |
spellingShingle |
Theta lifts of Bianchi modular forms and applications to paramodularity Berger, Tobias Bianchi modular forms Theta lifting Paramodularity Conjecture |
title_short |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_full |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_fullStr |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_full_unstemmed |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_sort |
Theta lifts of Bianchi modular forms and applications to paramodularity |
dc.creator.none.fl_str_mv |
Berger, Tobias Dembélé, Lassina Pacetti, Ariel Martín Şengün, Mehmet Haluk |
author |
Berger, Tobias |
author_facet |
Berger, Tobias Dembélé, Lassina Pacetti, Ariel Martín Şengün, Mehmet Haluk |
author_role |
author |
author2 |
Dembélé, Lassina Pacetti, Ariel Martín Şengün, Mehmet Haluk |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Bianchi modular forms Theta lifting Paramodularity Conjecture |
topic |
Bianchi modular forms Theta lifting Paramodularity Conjecture |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. Fil: Berger, Tobias. University Of Sheffield; Reino Unido Fil: Dembélé, Lassina. University of Warwick; Reino Unido Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Şengün, Mehmet Haluk. School of Mathematics and Statistics. The University of Sheffield; Reino Unido |
description |
We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93854 Berger, Tobias; Dembélé, Lassina; Pacetti, Ariel Martín; Şengün, Mehmet Haluk; Theta lifts of Bianchi modular forms and applications to paramodularity; Oxford University Press; Journal of the London Mathematical Society; 92; 2; 11-2014; 353-370 0024-6107 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93854 |
identifier_str_mv |
Berger, Tobias; Dembélé, Lassina; Pacetti, Ariel Martín; Şengün, Mehmet Haluk; Theta lifts of Bianchi modular forms and applications to paramodularity; Oxford University Press; Journal of the London Mathematical Society; 92; 2; 11-2014; 353-370 0024-6107 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jlms/article/92/2/353/1816277 info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdv023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268937090236416 |
score |
13.13397 |