A robust gradient-based MPC for integrating real time optimizer (RTO) with control
- Autores
- D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Model Predictive Control
Economic Optimization
Robust Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46943
Ver los metadatos del registro completo
id |
CONICETDig_705d0cb2b4adf736f2e6a16a837e85c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46943 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A robust gradient-based MPC for integrating real time optimizer (RTO) with controlD'jorge, AgustinaFerramosca, AntonioGonzález, Alejandro HernánModel Predictive ControlEconomic OptimizationRobust Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Universidad Tecnológica Nacional; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46943D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-800959-1524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2017.02.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0959152417300410info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:23Zoai:ri.conicet.gov.ar:11336/46943instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:24.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
title |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
spellingShingle |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control D'jorge, Agustina Model Predictive Control Economic Optimization Robust Control |
title_short |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
title_full |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
title_fullStr |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
title_full_unstemmed |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
title_sort |
A robust gradient-based MPC for integrating real time optimizer (RTO) with control |
dc.creator.none.fl_str_mv |
D'jorge, Agustina Ferramosca, Antonio González, Alejandro Hernán |
author |
D'jorge, Agustina |
author_facet |
D'jorge, Agustina Ferramosca, Antonio González, Alejandro Hernán |
author_role |
author |
author2 |
Ferramosca, Antonio González, Alejandro Hernán |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Economic Optimization Robust Control |
topic |
Model Predictive Control Economic Optimization Robust Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal. Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional; Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46943 D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-80 0959-1524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46943 |
identifier_str_mv |
D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-80 0959-1524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2017.02.015 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0959152417300410 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613365623685120 |
score |
13.070432 |