A robust gradient-based MPC for integrating real time optimizer (RTO) with control

Autores
D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Model Predictive Control
Economic Optimization
Robust Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46943

id CONICETDig_705d0cb2b4adf736f2e6a16a837e85c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/46943
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A robust gradient-based MPC for integrating real time optimizer (RTO) with controlD'jorge, AgustinaFerramosca, AntonioGonzález, Alejandro HernánModel Predictive ControlEconomic OptimizationRobust Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Universidad Tecnológica Nacional; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46943D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-800959-1524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2017.02.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0959152417300410info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:23Zoai:ri.conicet.gov.ar:11336/46943instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:24.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A robust gradient-based MPC for integrating real time optimizer (RTO) with control
title A robust gradient-based MPC for integrating real time optimizer (RTO) with control
spellingShingle A robust gradient-based MPC for integrating real time optimizer (RTO) with control
D'jorge, Agustina
Model Predictive Control
Economic Optimization
Robust Control
title_short A robust gradient-based MPC for integrating real time optimizer (RTO) with control
title_full A robust gradient-based MPC for integrating real time optimizer (RTO) with control
title_fullStr A robust gradient-based MPC for integrating real time optimizer (RTO) with control
title_full_unstemmed A robust gradient-based MPC for integrating real time optimizer (RTO) with control
title_sort A robust gradient-based MPC for integrating real time optimizer (RTO) with control
dc.creator.none.fl_str_mv D'jorge, Agustina
Ferramosca, Antonio
González, Alejandro Hernán
author D'jorge, Agustina
author_facet D'jorge, Agustina
Ferramosca, Antonio
González, Alejandro Hernán
author_role author
author2 Ferramosca, Antonio
González, Alejandro Hernán
author2_role author
author
dc.subject.none.fl_str_mv Model Predictive Control
Economic Optimization
Robust Control
topic Model Predictive Control
Economic Optimization
Robust Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.
publishDate 2017
dc.date.none.fl_str_mv 2017-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46943
D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-80
0959-1524
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46943
identifier_str_mv D'jorge, Agustina; Ferramosca, Antonio; González, Alejandro Hernán; A robust gradient-based MPC for integrating real time optimizer (RTO) with control; Elsevier; Journal Of Process Control; 54; 6-2017; 65-80
0959-1524
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2017.02.015
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0959152417300410
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613365623685120
score 13.070432