NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions
- Autores
- Alvarez, Bruno; Reynisson, Birkir; Barra, Carolina M; Buus, Søren; Ternette, Nicola; Connelley, Tim; Andreatta, Massimo; Nielsen, Morten
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The set of peptides presented on a cell´s surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of i) clustering peptides into individual specificities; ii) automatic annotation of each cluster to an MHC molecule; and iii) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse datasets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T cell-based therapeutics.
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca
Fil: Barra, Carolina M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Buus, Søren. Universidad de Copenhagen; Dinamarca
Fil: Ternette, Nicola. University of Oxford; Reino Unido
Fil: Connelley, Tim. The Roslin Institute; Reino Unido
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina - Materia
-
MHC
Immunoinformatics
Mass Spectrometry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153404
Ver los metadatos del registro completo
id |
CONICETDig_e156fe407c0844d45912ecea83210e59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153404 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictionsAlvarez, BrunoReynisson, BirkirBarra, Carolina MBuus, SørenTernette, NicolaConnelley, TimAndreatta, MassimoNielsen, MortenMHCImmunoinformaticsMass Spectrometryhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3The set of peptides presented on a cell´s surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of i) clustering peptides into individual specificities; ii) automatic annotation of each cluster to an MHC molecule; and iii) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse datasets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T cell-based therapeutics.Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Reynisson, Birkir. Technical University of Denmark; DinamarcaFil: Barra, Carolina M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Ternette, Nicola. University of Oxford; Reino UnidoFil: Connelley, Tim. The Roslin Institute; Reino UnidoFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaAmerican Society for Biochemistry and Molecular Biology2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153404Alvarez, Bruno; Reynisson, Birkir; Barra, Carolina M; Buus, Søren; Ternette, Nicola; et al.; NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions; American Society for Biochemistry and Molecular Biology; Molecular & Cellular Proteomics; 18; 12; 10-2019; 2459-24771535-9476CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mcponline.org/lookup/doi/10.1074/mcp.TIR119.001658info:eu-repo/semantics/altIdentifier/doi/10.1074/mcp.TIR119.001658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:53Zoai:ri.conicet.gov.ar:11336/153404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:53.46CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
title |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
spellingShingle |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions Alvarez, Bruno MHC Immunoinformatics Mass Spectrometry |
title_short |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
title_full |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
title_fullStr |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
title_full_unstemmed |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
title_sort |
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions |
dc.creator.none.fl_str_mv |
Alvarez, Bruno Reynisson, Birkir Barra, Carolina M Buus, Søren Ternette, Nicola Connelley, Tim Andreatta, Massimo Nielsen, Morten |
author |
Alvarez, Bruno |
author_facet |
Alvarez, Bruno Reynisson, Birkir Barra, Carolina M Buus, Søren Ternette, Nicola Connelley, Tim Andreatta, Massimo Nielsen, Morten |
author_role |
author |
author2 |
Reynisson, Birkir Barra, Carolina M Buus, Søren Ternette, Nicola Connelley, Tim Andreatta, Massimo Nielsen, Morten |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
MHC Immunoinformatics Mass Spectrometry |
topic |
MHC Immunoinformatics Mass Spectrometry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The set of peptides presented on a cell´s surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of i) clustering peptides into individual specificities; ii) automatic annotation of each cluster to an MHC molecule; and iii) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse datasets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T cell-based therapeutics. Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca Fil: Barra, Carolina M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Buus, Søren. Universidad de Copenhagen; Dinamarca Fil: Ternette, Nicola. University of Oxford; Reino Unido Fil: Connelley, Tim. The Roslin Institute; Reino Unido Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina |
description |
The set of peptides presented on a cell´s surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of i) clustering peptides into individual specificities; ii) automatic annotation of each cluster to an MHC molecule; and iii) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse datasets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T cell-based therapeutics. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153404 Alvarez, Bruno; Reynisson, Birkir; Barra, Carolina M; Buus, Søren; Ternette, Nicola; et al.; NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions; American Society for Biochemistry and Molecular Biology; Molecular & Cellular Proteomics; 18; 12; 10-2019; 2459-2477 1535-9476 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153404 |
identifier_str_mv |
Alvarez, Bruno; Reynisson, Birkir; Barra, Carolina M; Buus, Søren; Ternette, Nicola; et al.; NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions; American Society for Biochemistry and Molecular Biology; Molecular & Cellular Proteomics; 18; 12; 10-2019; 2459-2477 1535-9476 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mcponline.org/lookup/doi/10.1074/mcp.TIR119.001658 info:eu-repo/semantics/altIdentifier/doi/10.1074/mcp.TIR119.001658 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society for Biochemistry and Molecular Biology |
publisher.none.fl_str_mv |
American Society for Biochemistry and Molecular Biology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270097916297216 |
score |
13.13397 |