Phase transitions in a system of long rods on two-dimensional lattices by means of information theory
- Autores
- Vogel, E. E.; Saravia, Gregorio; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L×L square lattice). A Monte Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding the information content measured by a parameter η(θ). This allows us to recognize two maxima separated by a well-defined minimum for η(θ) provided k≥7. The first maximum is associated with an isotropic-nematic (I-N) phase transition occurring at intermediate density, while the second maximum is associated with some kind of nematic-isotropic transition at high coverage. In the cases of k<7, the curves for η(θ) are almost constant, presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations confirm the tendency obtained by different methods in the case of the intermediate-density I-N phase transition, while this tendency is established here in the case of the high-density phase transition.
Fil: Vogel, E. E.. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile
Fil: Saravia, Gregorio. Universidad de La Frontera; Chile
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
Phase Transition
Two-Dimensional Lattices
Information Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63857
Ver los metadatos del registro completo
id |
CONICETDig_e7e9382a35dabb0b282c9fc54d5fbaf9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63857 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theoryVogel, E. E.Saravia, GregorioRamirez Pastor, Antonio JosePhase TransitionTwo-Dimensional LatticesInformation Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L×L square lattice). A Monte Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding the information content measured by a parameter η(θ). This allows us to recognize two maxima separated by a well-defined minimum for η(θ) provided k≥7. The first maximum is associated with an isotropic-nematic (I-N) phase transition occurring at intermediate density, while the second maximum is associated with some kind of nematic-isotropic transition at high coverage. In the cases of k<7, the curves for η(θ) are almost constant, presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations confirm the tendency obtained by different methods in the case of the intermediate-density I-N phase transition, while this tendency is established here in the case of the high-density phase transition.Fil: Vogel, E. E.. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; ChileFil: Saravia, Gregorio. Universidad de La Frontera; ChileFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63857Vogel, E. E.; Saravia, Gregorio; Ramirez Pastor, Antonio Jose; Phase transitions in a system of long rods on two-dimensional lattices by means of information theory; American Physical Society; Physical Review E; 96; 6; 12-2017; 1-72470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.062133info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.062133info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:20:50Zoai:ri.conicet.gov.ar:11336/63857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:20:50.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
title |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
spellingShingle |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory Vogel, E. E. Phase Transition Two-Dimensional Lattices Information Theory |
title_short |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
title_full |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
title_fullStr |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
title_full_unstemmed |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
title_sort |
Phase transitions in a system of long rods on two-dimensional lattices by means of information theory |
dc.creator.none.fl_str_mv |
Vogel, E. E. Saravia, Gregorio Ramirez Pastor, Antonio Jose |
author |
Vogel, E. E. |
author_facet |
Vogel, E. E. Saravia, Gregorio Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Saravia, Gregorio Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Phase Transition Two-Dimensional Lattices Information Theory |
topic |
Phase Transition Two-Dimensional Lattices Information Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L×L square lattice). A Monte Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding the information content measured by a parameter η(θ). This allows us to recognize two maxima separated by a well-defined minimum for η(θ) provided k≥7. The first maximum is associated with an isotropic-nematic (I-N) phase transition occurring at intermediate density, while the second maximum is associated with some kind of nematic-isotropic transition at high coverage. In the cases of k<7, the curves for η(θ) are almost constant, presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations confirm the tendency obtained by different methods in the case of the intermediate-density I-N phase transition, while this tendency is established here in the case of the high-density phase transition. Fil: Vogel, E. E.. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile Fil: Saravia, Gregorio. Universidad de La Frontera; Chile Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L×L square lattice). A Monte Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding the information content measured by a parameter η(θ). This allows us to recognize two maxima separated by a well-defined minimum for η(θ) provided k≥7. The first maximum is associated with an isotropic-nematic (I-N) phase transition occurring at intermediate density, while the second maximum is associated with some kind of nematic-isotropic transition at high coverage. In the cases of k<7, the curves for η(θ) are almost constant, presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations confirm the tendency obtained by different methods in the case of the intermediate-density I-N phase transition, while this tendency is established here in the case of the high-density phase transition. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63857 Vogel, E. E.; Saravia, Gregorio; Ramirez Pastor, Antonio Jose; Phase transitions in a system of long rods on two-dimensional lattices by means of information theory; American Physical Society; Physical Review E; 96; 6; 12-2017; 1-7 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63857 |
identifier_str_mv |
Vogel, E. E.; Saravia, Gregorio; Ramirez Pastor, Antonio Jose; Phase transitions in a system of long rods on two-dimensional lattices by means of information theory; American Physical Society; Physical Review E; 96; 6; 12-2017; 1-7 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.96.062133 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.062133 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083356722200576 |
score |
13.22299 |