Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations

Autores
Pasinetti, Pedro Marcelo; Romá, Federico José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) wL, interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) wT, interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (wT >0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters kB T wT (being kB the Boltzmann constant) and wL wT. For wL wT =0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known (3×3) [(3×3)*] ordered phase is found at low temperatures and a coverage, θ, of 13 [23]. In the more general case (wL wT 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the (3×3) and (3×3)* structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, Tc, which presents an interesting dependence with wL wT. The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Romá, Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
LATTICE GAS MODELS
PHASE TRANSITIONS
MONTE CARLO SIMULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170754

id CONICETDig_50faae134dc157eac184213d7e2bc45e
oai_identifier_str oai:ri.conicet.gov.ar:11336/170754
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulationsPasinetti, Pedro MarceloRomá, Federico JoséRiccardo, Jose LuisRamirez Pastor, Antonio JoseLATTICE GAS MODELSPHASE TRANSITIONSMONTE CARLO SIMULATIONShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) wL, interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) wT, interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (wT >0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters kB T wT (being kB the Boltzmann constant) and wL wT. For wL wT =0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known (3×3) [(3×3)*] ordered phase is found at low temperatures and a coverage, θ, of 13 [23]. In the more general case (wL wT 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the (3×3) and (3×3)* structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, Tc, which presents an interesting dependence with wL wT. The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Romá, Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Institute of Physics2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170754Pasinetti, Pedro Marcelo; Romá, Federico José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations; American Institute of Physics; Journal of Chemical Physics; 125; 21; 12-2006; 1-90021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2397682info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:58Zoai:ri.conicet.gov.ar:11336/170754instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:59.132CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
title Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
spellingShingle Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
Pasinetti, Pedro Marcelo
LATTICE GAS MODELS
PHASE TRANSITIONS
MONTE CARLO SIMULATIONS
title_short Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
title_full Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
title_fullStr Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
title_full_unstemmed Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
title_sort Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
dc.creator.none.fl_str_mv Pasinetti, Pedro Marcelo
Romá, Federico José
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author Pasinetti, Pedro Marcelo
author_facet Pasinetti, Pedro Marcelo
Romá, Federico José
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author_role author
author2 Romá, Federico José
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author2_role author
author
author
dc.subject.none.fl_str_mv LATTICE GAS MODELS
PHASE TRANSITIONS
MONTE CARLO SIMULATIONS
topic LATTICE GAS MODELS
PHASE TRANSITIONS
MONTE CARLO SIMULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) wL, interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) wT, interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (wT >0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters kB T wT (being kB the Boltzmann constant) and wL wT. For wL wT =0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known (3×3) [(3×3)*] ordered phase is found at low temperatures and a coverage, θ, of 13 [23]. In the more general case (wL wT 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the (3×3) and (3×3)* structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, Tc, which presents an interesting dependence with wL wT. The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Romá, Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) wL, interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) wT, interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (wT >0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters kB T wT (being kB the Boltzmann constant) and wL wT. For wL wT =0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known (3×3) [(3×3)*] ordered phase is found at low temperatures and a coverage, θ, of 13 [23]. In the more general case (wL wT 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the (3×3) and (3×3)* structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, Tc, which presents an interesting dependence with wL wT. The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Romá, Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170754
Pasinetti, Pedro Marcelo; Romá, Federico José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations; American Institute of Physics; Journal of Chemical Physics; 125; 21; 12-2006; 1-9
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170754
identifier_str_mv Pasinetti, Pedro Marcelo; Romá, Federico José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations; American Institute of Physics; Journal of Chemical Physics; 125; 21; 12-2006; 1-9
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2397682
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269492924645376
score 13.13397