Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
- Autores
- Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; Rémy, Samuel; Di Liberto, Luca; Oxford, Christopher R.; Windwer, Eli; Del Frate, Fabio
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.
Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; Italia
Fil: Curci, Gabriele. Universita degli Studi dell'Aquila; Italia
Fil: De Santis, Davide. Universita Tor Vergata; Italia
Fil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; Italia
Fil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; Italia
Fil: Rémy, Samuel. Hygeos; Francia
Fil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; Italia
Fil: Oxford, Christopher R.. Washington University in St. Louis; Estados Unidos
Fil: Windwer, Eli. Weizmann Institute Of Science.; Israel
Fil: Del Frate, Fabio. Universita Tor Vergata; Italia - Materia
-
CAMS
FLEXAOD
SPARTAN
AERONET
CHEMICAL COMPOSITION OF PARTICULATE MATTER
AEROSOL OPTICAL PARAMETERS
MONITORING NETWORK
VALIDATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267609
Ver los metadatos del registro completo
id |
CONICETDig_e742f75a30880f1686ed0afd19f972e1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267609 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global dataAmarillo, Ana CarolinaCurci, GabrieleDe Santis, DavideBassani, CristianaBarnaba, FrancescaRémy, SamuelDi Liberto, LucaOxford, Christopher R.Windwer, EliDel Frate, FabioCAMSFLEXAODSPARTANAERONETCHEMICAL COMPOSITION OF PARTICULATE MATTERAEROSOL OPTICAL PARAMETERSMONITORING NETWORKVALIDATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; ItaliaFil: Curci, Gabriele. Universita degli Studi dell'Aquila; ItaliaFil: De Santis, Davide. Universita Tor Vergata; ItaliaFil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; ItaliaFil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; ItaliaFil: Rémy, Samuel. Hygeos; FranciaFil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; ItaliaFil: Oxford, Christopher R.. Washington University in St. Louis; Estados UnidosFil: Windwer, Eli. Weizmann Institute Of Science.; IsraelFil: Del Frate, Fabio. Universita Tor Vergata; ItaliaPergamon-Elsevier Science Ltd2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267609Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-161352-2310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231024003583info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2024.120683info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:39Zoai:ri.conicet.gov.ar:11336/267609instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:40.006CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
title |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
spellingShingle |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data Amarillo, Ana Carolina CAMS FLEXAOD SPARTAN AERONET CHEMICAL COMPOSITION OF PARTICULATE MATTER AEROSOL OPTICAL PARAMETERS MONITORING NETWORK VALIDATION |
title_short |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
title_full |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
title_fullStr |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
title_full_unstemmed |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
title_sort |
Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data |
dc.creator.none.fl_str_mv |
Amarillo, Ana Carolina Curci, Gabriele De Santis, Davide Bassani, Cristiana Barnaba, Francesca Rémy, Samuel Di Liberto, Luca Oxford, Christopher R. Windwer, Eli Del Frate, Fabio |
author |
Amarillo, Ana Carolina |
author_facet |
Amarillo, Ana Carolina Curci, Gabriele De Santis, Davide Bassani, Cristiana Barnaba, Francesca Rémy, Samuel Di Liberto, Luca Oxford, Christopher R. Windwer, Eli Del Frate, Fabio |
author_role |
author |
author2 |
Curci, Gabriele De Santis, Davide Bassani, Cristiana Barnaba, Francesca Rémy, Samuel Di Liberto, Luca Oxford, Christopher R. Windwer, Eli Del Frate, Fabio |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
CAMS FLEXAOD SPARTAN AERONET CHEMICAL COMPOSITION OF PARTICULATE MATTER AEROSOL OPTICAL PARAMETERS MONITORING NETWORK VALIDATION |
topic |
CAMS FLEXAOD SPARTAN AERONET CHEMICAL COMPOSITION OF PARTICULATE MATTER AEROSOL OPTICAL PARAMETERS MONITORING NETWORK VALIDATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset. Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; Italia Fil: Curci, Gabriele. Universita degli Studi dell'Aquila; Italia Fil: De Santis, Davide. Universita Tor Vergata; Italia Fil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; Italia Fil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; Italia Fil: Rémy, Samuel. Hygeos; Francia Fil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; Italia Fil: Oxford, Christopher R.. Washington University in St. Louis; Estados Unidos Fil: Windwer, Eli. Weizmann Institute Of Science.; Israel Fil: Del Frate, Fabio. Universita Tor Vergata; Italia |
description |
Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267609 Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-16 1352-2310 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267609 |
identifier_str_mv |
Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-16 1352-2310 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231024003583 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2024.120683 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613343810158592 |
score |
13.069144 |