Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data

Autores
Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; Rémy, Samuel; Di Liberto, Luca; Oxford, Christopher R.; Windwer, Eli; Del Frate, Fabio
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.
Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; Italia
Fil: Curci, Gabriele. Universita degli Studi dell'Aquila; Italia
Fil: De Santis, Davide. Universita Tor Vergata; Italia
Fil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; Italia
Fil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; Italia
Fil: Rémy, Samuel. Hygeos; Francia
Fil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; Italia
Fil: Oxford, Christopher R.. Washington University in St. Louis; Estados Unidos
Fil: Windwer, Eli. Weizmann Institute Of Science.; Israel
Fil: Del Frate, Fabio. Universita Tor Vergata; Italia
Materia
CAMS
FLEXAOD
SPARTAN
AERONET
CHEMICAL COMPOSITION OF PARTICULATE MATTER
AEROSOL OPTICAL PARAMETERS
MONITORING NETWORK
VALIDATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267609

id CONICETDig_e742f75a30880f1686ed0afd19f972e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/267609
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global dataAmarillo, Ana CarolinaCurci, GabrieleDe Santis, DavideBassani, CristianaBarnaba, FrancescaRémy, SamuelDi Liberto, LucaOxford, Christopher R.Windwer, EliDel Frate, FabioCAMSFLEXAODSPARTANAERONETCHEMICAL COMPOSITION OF PARTICULATE MATTERAEROSOL OPTICAL PARAMETERSMONITORING NETWORKVALIDATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; ItaliaFil: Curci, Gabriele. Universita degli Studi dell'Aquila; ItaliaFil: De Santis, Davide. Universita Tor Vergata; ItaliaFil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; ItaliaFil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; ItaliaFil: Rémy, Samuel. Hygeos; FranciaFil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; ItaliaFil: Oxford, Christopher R.. Washington University in St. Louis; Estados UnidosFil: Windwer, Eli. Weizmann Institute Of Science.; IsraelFil: Del Frate, Fabio. Universita Tor Vergata; ItaliaPergamon-Elsevier Science Ltd2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267609Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-161352-2310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231024003583info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2024.120683info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:39Zoai:ri.conicet.gov.ar:11336/267609instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:40.006CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
title Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
spellingShingle Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
Amarillo, Ana Carolina
CAMS
FLEXAOD
SPARTAN
AERONET
CHEMICAL COMPOSITION OF PARTICULATE MATTER
AEROSOL OPTICAL PARAMETERS
MONITORING NETWORK
VALIDATION
title_short Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
title_full Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
title_fullStr Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
title_full_unstemmed Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
title_sort Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data
dc.creator.none.fl_str_mv Amarillo, Ana Carolina
Curci, Gabriele
De Santis, Davide
Bassani, Cristiana
Barnaba, Francesca
Rémy, Samuel
Di Liberto, Luca
Oxford, Christopher R.
Windwer, Eli
Del Frate, Fabio
author Amarillo, Ana Carolina
author_facet Amarillo, Ana Carolina
Curci, Gabriele
De Santis, Davide
Bassani, Cristiana
Barnaba, Francesca
Rémy, Samuel
Di Liberto, Luca
Oxford, Christopher R.
Windwer, Eli
Del Frate, Fabio
author_role author
author2 Curci, Gabriele
De Santis, Davide
Bassani, Cristiana
Barnaba, Francesca
Rémy, Samuel
Di Liberto, Luca
Oxford, Christopher R.
Windwer, Eli
Del Frate, Fabio
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CAMS
FLEXAOD
SPARTAN
AERONET
CHEMICAL COMPOSITION OF PARTICULATE MATTER
AEROSOL OPTICAL PARAMETERS
MONITORING NETWORK
VALIDATION
topic CAMS
FLEXAOD
SPARTAN
AERONET
CHEMICAL COMPOSITION OF PARTICULATE MATTER
AEROSOL OPTICAL PARAMETERS
MONITORING NETWORK
VALIDATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.
Fil: Amarillo, Ana Carolina. Universita degli Studi dell'Aquila; Italia
Fil: Curci, Gabriele. Universita degli Studi dell'Aquila; Italia
Fil: De Santis, Davide. Universita Tor Vergata; Italia
Fil: Bassani, Cristiana. Consiglio Nazionale delle Ricerche; Italia
Fil: Barnaba, Francesca. Consiglio Nazionale delle Ricerche; Italia
Fil: Rémy, Samuel. Hygeos; Francia
Fil: Di Liberto, Luca. Consiglio Nazionale delle Ricerche; Italia
Fil: Oxford, Christopher R.. Washington University in St. Louis; Estados Unidos
Fil: Windwer, Eli. Weizmann Institute Of Science.; Israel
Fil: Del Frate, Fabio. Universita Tor Vergata; Italia
description Monitoring particulate matter (PM) air pollution in terms of both concentration and composition, is very important due to its effects on human health and climate. In the PRIMARY project we aim at retrieving the aerosol composition from space using the hyperspectral observations from the Italian Space Agency’s PRISMA mission. To this end, we are developing a machine learning algorithm trained with synthetic top-of-atmosphere reflectances and underlying aerosol fields. As part of this process, we plan to use the global forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) as the core to generate this synthetic dataset. However, to proceed in this direction, a preliminary assessment of the reliability of this model-based dataset when compared to observations is necessary, also to bias correct the output if needed. With this aim, we assess the representation of the aerosol chemical composition and the related optical properties at selected globally distributed sites in CAMS, comparing the simulations with near-surface aerosol chemical analyses from the SPARTAN network and column sun-photometer observations from the AERONET network. We found that CAMS forecasts skills changed over time due to updates in the modelling system, with the latter two version cycles (46 and 47) being similar. Generally, they reproduce the aerosol composition within a factor of 2. We found a substantial overestimation of organic matter (OM) by a factor of 3. Applying a correcting factor to OM (constant at the global level) warrants a much more realistic representation of PM2.5 total mass and relative fraction of single species in CAMS. From the so derived CAMS aerosol-speciated profiles, we calculate aerosol optical properties, needed for subsequent use in a radiative transfer model. Comparison against AERONET indeed shows that OM bias correction resulted in improvements in Extinction Ångstrom Exponent (α870nm 440nm). Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (g) simulations resulted slightly degraded, confirming the possibility of using CAMS as the base for a synthetic retrieval training dataset.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267609
Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-16
1352-2310
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267609
identifier_str_mv Amarillo, Ana Carolina; Curci, Gabriele; De Santis, Davide; Bassani, Cristiana; Barnaba, Francesca; et al.; Validation of aerosol chemical composition and optical properties provided by Copernicus Atmosphere Monitoring Service (CAMS) using ground-based global data; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 334; 120683; 10-2024; 1-16
1352-2310
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231024003583
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2024.120683
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613343810158592
score 13.069144