A note on a system with radiation boundary conditions with non-symmetric linearisation
- Autores
- Amster, Pablo Gustavo; Kuna, Mariel Paula
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Multiplicity
Radiation Boundary Conditions
Second Order Ode Systems
Topological Degree - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55565
Ver los metadatos del registro completo
id |
CONICETDig_1af347e2380bebae8441ec57182a86dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55565 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on a system with radiation boundary conditions with non-symmetric linearisationAmster, Pablo GustavoKuna, Mariel PaulaMultiplicityRadiation Boundary ConditionsSecond Order Ode SystemsTopological Degreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer Wien2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55565Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-5770026-9255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-017-1098-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1098-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:52Zoai:ri.conicet.gov.ar:11336/55565instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:52.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
title |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
spellingShingle |
A note on a system with radiation boundary conditions with non-symmetric linearisation Amster, Pablo Gustavo Multiplicity Radiation Boundary Conditions Second Order Ode Systems Topological Degree |
title_short |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
title_full |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
title_fullStr |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
title_full_unstemmed |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
title_sort |
A note on a system with radiation boundary conditions with non-symmetric linearisation |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Kuna, Mariel Paula |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo Kuna, Mariel Paula |
author_role |
author |
author2 |
Kuna, Mariel Paula |
author2_role |
author |
dc.subject.none.fl_str_mv |
Multiplicity Radiation Boundary Conditions Second Order Ode Systems Topological Degree |
topic |
Multiplicity Radiation Boundary Conditions Second Order Ode Systems Topological Degree |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric. Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55565 Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-577 0026-9255 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55565 |
identifier_str_mv |
Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-577 0026-9255 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-017-1098-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1098-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269722503020544 |
score |
13.13397 |