A note on a system with radiation boundary conditions with non-symmetric linearisation

Autores
Amster, Pablo Gustavo; Kuna, Mariel Paula
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Multiplicity
Radiation Boundary Conditions
Second Order Ode Systems
Topological Degree
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55565

id CONICETDig_1af347e2380bebae8441ec57182a86dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/55565
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A note on a system with radiation boundary conditions with non-symmetric linearisationAmster, Pablo GustavoKuna, Mariel PaulaMultiplicityRadiation Boundary ConditionsSecond Order Ode SystemsTopological Degreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer Wien2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55565Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-5770026-9255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-017-1098-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1098-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:52Zoai:ri.conicet.gov.ar:11336/55565instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:52.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A note on a system with radiation boundary conditions with non-symmetric linearisation
title A note on a system with radiation boundary conditions with non-symmetric linearisation
spellingShingle A note on a system with radiation boundary conditions with non-symmetric linearisation
Amster, Pablo Gustavo
Multiplicity
Radiation Boundary Conditions
Second Order Ode Systems
Topological Degree
title_short A note on a system with radiation boundary conditions with non-symmetric linearisation
title_full A note on a system with radiation boundary conditions with non-symmetric linearisation
title_fullStr A note on a system with radiation boundary conditions with non-symmetric linearisation
title_full_unstemmed A note on a system with radiation boundary conditions with non-symmetric linearisation
title_sort A note on a system with radiation boundary conditions with non-symmetric linearisation
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Kuna, Mariel Paula
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Kuna, Mariel Paula
author_role author
author2 Kuna, Mariel Paula
author2_role author
dc.subject.none.fl_str_mv Multiplicity
Radiation Boundary Conditions
Second Order Ode Systems
Topological Degree
topic Multiplicity
Radiation Boundary Conditions
Second Order Ode Systems
Topological Degree
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55565
Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-577
0026-9255
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55565
identifier_str_mv Amster, Pablo Gustavo; Kuna, Mariel Paula; A note on a system with radiation boundary conditions with non-symmetric linearisation; Springer Wien; Monatshefete Fur Mathematik; 186; 4; 8-2018; 565-577
0026-9255
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-017-1098-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1098-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Wien
publisher.none.fl_str_mv Springer Wien
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269722503020544
score 13.13397